
SMC-TR-02-13 AEROSPACE REPORT NO.
TR-2002(8550)-1

Object-Oriented Metrics

20 January 2002

Prepared by

L. A. ABELSON
Software Engineering Subdivision
Computer Systems Division

Prepared for

SPACE AND MISSILE SYSTEMS CENTER
AIR FORCE MATERIEL COMMAND
2430 E. El Segundo Boulevard
Los Angeles Air Force Base, CA 90245

Engineering and Technology Group

(2s THE AEROSPACE
 CORPORATION
El Segundo, California

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED

20020411 073

This report was submitted by The Aerospace Corporation, El Segundo, CA 90245-4691, under Con-
tract No. F04701-00-C-0009 with the Space and Missile Systems Center, 2430 E. El Segundo Blvd.,
Los Angeles Air Force Base, CA 90245. It was reviewed and approved for The Aerospace Corpora-
tion by M. A. Rich, Principal Director, Software Engineering Subdivision. Michael Zambrana was
the project officer for the Mission-Oriented Investigation and Experimentation (MOIE) program.

This report has been reviewed by the Public Affairs Office (PAS) and is releasable to the National
Technical Information Service (NTIS). At NTIS, it will be available to the general public, including
foreign nationals.

This technical report has been reviewed and is approved for publication. Publication of this report
does not constitute Air Force approval of the report's findings or conclusions. It is published only for
the exchange and stimulation of ideas.

tyr/j^y
Michael Zambrana
SMC/AXE

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and
Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person
shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM
TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)
20-01-2002

2. REPORT TYPE 3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE

Object-Oriented Metrics

5a. CONTRACT NUMBER
F04701-00-C-0009
5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

L. A. Abelson

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

The Aerospace Corporation
Computer Systems Division
El Segundo, CA 90245-4691

8. PERFORMING ORGANIZATION
REPORT NUMBER

TR-2002(8550)-l

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Space and Missile Systems Center
Air Force Space Command
2430 E. El Segundo Blvd.
Los Angeles Air Force Base, CA 90245

10. SPONSOR/MONITOR'S ACRONYM(S)
SMC

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

SMC-TR-02-13
12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

The application of object-oriented methodology and an evolutionary approach to the development of software-intensive
systems introduces some unique acquisition management challenges. This report discusses the unique challenges of using
metrics to monitor software developed using object-oriented techniques and evolutionary development lifecycle. Topics
addressed include the definition of 31 specific metrics that may be used for monitoring object-oriented design and
development. In addition, this report provides guidance on which metrics would be useful during the process of
transitioning to the object technology.

15. SUBJECT TERMS
Metrics, Object-Oriented Metrics

16. SECURITY CLASSIFICATION OF:

a. REPORT

UNCLASSIFIED

b. ABSTRACT

UNCLASSIFIED

c. THIS PAGE

UNCLASSIFIED

17. LIMITATION
OF ABSTRACT

18. NUMBER
OF PAGES

87

19a. NAME OF
RESPONSIBLE PERSON

Linda Abelson
19b. TELEPHONE
NUMBER (include area
code)

(310)336-7350
Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. 239.18

Acknowledgments

The technical content, as well as the preparation, of this report was developed under the Mission-
Oriented Investigation and Experimentation (MOIE) program (Software Acquisition Task). The
author wishes to thank the following members of the Computer Systems Division (CSD) and the
Reconnaissance Systems Division (RSD) for their review of this report and suggestions for
improvements.

Richard Adams, Senior Engineering Specialist, CSD

Sergio Alvarado, Director, CSD

Sheri Benator, Manager, CSD

Colleen Ellis, Senior Engineering Specialist, CSD

Suellen Eslinger, Distinguished Engineer, CSD

Rick Johnson, Engineering Specialist, CSD

Larry Miller, Senior Engineering Specialist, CSD

Mary Rich, Principle Director, CSD

Bonnie Troup, Senior Engineering Specialist, RSD

In addition, the author wishes to acknowledge the contribution of Appendix D - Acquisition and
Development Metrics Planning by Rita Creel, Senior Engineering Specialist, RSD.

in

Contents

1. The Object-Oriented Paradigm 1

1.1 Historical Justification for OO 2

1.2 Definitions of Relevant OO Terminology 3

2. Metrics for Use with Object-Oriented Techniques 7

2.1 Overview of the Metrics Framework 7

2.2 Selection and Justification of OO-Unique Metrics 9

3. Catalog of Recommended OO Unique Metrics 13

3.1 Growth and Stability 14

3.1.1 Size 15

3.1.2 Requirements Volatility 21

3.1.3 Design Volatility 23

3.2 Product Quality 27

3.2.1 Inheritance 27

3.2.2 Object Structure 30

3.2.3 Coupling 33

3.3 Schedule and Progress 36

3.3.1 Milestone 36

3.3.2 Class Status 39

3.3.3 Use Case Status 46

3.3.4 Build Content - Classes 51

3.3.5 Build Content - Use Cases 54

4. OO Technology Transition and Metrics Selection 57

4.1 Technology Transition Life cycle 57

4.2 Technology Adoption Curve 58

4.3 Relationship Between Technology Transition Life cycle
and Technology Adoption Curve 59

Preceding Pagers Blank

4.4 Selecting Object-Oriented Metrics 60

4.4.1 Technology Transition Life cycle - Awareness Phase 61

4.4.2 Technology Transition Life cycle - Exploration Phase 61

4.4.3 Technology Transition Life cycle - Adoption Phase 62

5. Summary 65

Appendix A—Metrics Calculations 67

Appendix B—Referenced Documents 71

Appendix C—OO Technique Primer 73

Appendix D—Acquisition and Development Metrics Planning 83

Figures

1.1-1. Software complexity continues to increase. [GSAM] 2

1.1-2. Software productivity continues to increase 3

2.1-1. Interrelationship of metrics issues 7

2.1-2. Software issue to category mapping 9

2.2-1. Interrelationships of OO metrics issues 10

2.2-2. Software OO issue to category mapping for Growth and Stability 10

2.2-3. Software OO issue to category mapping for Product Quality 10

2.2-4. Software OO issue to category mapping for Schedule and Progress 11

3.1-1. Plan versus actual use cases completed 16

3.1-2. Plan versus actual classes completed 17

3.1-3. Number of attributes per class l8

3.1-4. Number of methods per class 19

3.1-5. Number of scenarios per use case 20

3.1-6. Added, deleted and modified use cases 22

VI

3.1-7. Added, deleted and modified classes 24

3.1-8. Added, deleted and modified methods 25

3.1-9. Added, deleted and modified attributes 26

3.2-1. Number of children per class 28

3.2-2. Depth of inheritance tree per class 29

3.2-3. Weighted methods per class ••••• 31

3.2-4. Type of methods class 32

3.2-5. Coupling betweenclasses 34

3.2-6. Response for a class 35

3.3-1. Plan vs. actual milestone days 37

3.3-2. Milestone slip ratio 38

3.3-3. Plan versus actual methods completed 41

3.3-4. Plan versus actual attributes completed 42

3.3-5. Class traceability status 43

3.3-6. Integration test traceability status 44

3.3-7. Plan verses actual classes that have successfully passed integration test 45

3.3-8. Use case traceability status 48

3.3-9. Functional test traceability status 49

3.3-10. Plan verses actual use cases that have successfully passed functional test 50

3.3-11. Plan versus actual classes in build 52

3.3-12. Ratio of classes in build 53

3.3-13. Plan verses actual use cases in build 55

3.3-14. Ratio of use cases in build 56

4.1-1. Technology transition life cycle 57

4.2-1. Technology adoption curve 59

vn

Tables

3-1. Object-Oriented Metrics 14

3.1-1 Growth and Stability OO Metrics 14

3.2-1. Product Quality Metrics 27

3.3-1. Schedule and Progress Metrics 36

4.3-1. Technology Transition Life Cycle Divisions versus
Technology Adoption Curve Divisions 60

4.4-1. Goal Question Metric Applied to the Awareness Phase 61

4.4-2. Goal Question Metric Applied to the Exploration Phase 62

4.4-3. Goal Question Metric Applied to the Adoption Phase 63

vm

1. The Object-Oriented Paradigm

Most engineering disciplines use measurement to manage and control research and development, to
monitor progress and the quality of products under development, to gauge the effects of decisions and
process changes, and to quantify the impacts of external influences. This has not typically been the
case for software engineering. However, the Software Program Managers Network (SPMN) has
highlighted as a Principle Best Practice the need for more accurate and timely status information, as
well as data that will enable early problem and risk identification. [SPMN] As a result, there is a
growing interest in the software engineering community in applying measurement to software sys-
tems via the use of software system metrics.

Promises of great improvements in productivity and quality have led many organizations to adopt
object-oriented (00) development methods. These promises have been based on the assumption that
significant reductions in development and maintenance costs are possible due to the way in which OO
systems are structured. Object-based designs have the potential to reduce the scope and impacts of
software changes and to lead to a greater capacity for reuse. Such benefits are very attractive in to-
day's environment of rapidly evolving needs and decreasing budgets. However, for most organiza-
tions that have attempted it, the transition from conventional to 00 development has been far from
trouble free. Often, the results have been disappointing, at times seeming to be a step backward
rather than forward. In many cases, unrealistic expectations are partially to blame; insufficient expe-
rience with the 00 paradigm and lack of familiarity with the specific 00 methodology used and
associated metrics are also contributing factors.

The purpose of this report is to provide guidance in developing and using metrics for 00 systems.
This report addresses only metrics specific to 00 development. It does not address those metrics
common to all developments independent of methodology used. As with conventional development,
metrics used in OO development can be helpful not only in providing information on development
status, problems, and risks, but also in evaluating the effectiveness of 00 methods and tools them-
selves. Measurement can be used to track progress toward taking full advantage of the OO paradigm.
00 metrics can help assess whether or not 00 methods are being effectively used to facilitate modi-
fiability and reusability. As organizations modify their OO processes with the intent of improvement,
00 metrics are needed to assess whether or not intended improvements are indeed realized.

Coverage of 00 metrics for the full life cycle is addressed here; it is not enough to focus on detailed
design and code. The most costly errors in software system development originate in the earliest
activities and products, particularly in requirement analysis and architectural design. Use of a metrics
approach that addresses the progress and quality of these activities and their products can aid early
identification of problems and risks and forestall the domino effect of negative impacts to down-
stream activities and products.

This report documents the unique challenges of developing software using object-oriented techniques,
and provides specific measurements and metrics that may be utilized for monitoring the development

of object-oriented software systems. In addition, this report provides guidance on which metrics
would be useful during the technology transition process.

The report consists of five sections and four appendixes. Following this introduction, Section 2
defines metrics for the object-oriented paradigm by providing a discussion of the metrics framework,
describing the unique attributes of the object-oriented paradigm and providing justification for the
selection of OO-unique metrics. Section 3 provides a catalog of object-oriented unique metrics. Sec-
tion 4 provides guidance on metrics selection. Finally, Section 5 contains conclusions.

The report's four appendixes contain supplementary information. Appendix A provides formulas for
calculating metrics presented in Section 3.0, and Appendix B provides a list of references. Appendix
C provides background information on OO techniques. Appendix D provides guidance on acquisition
and development planning for metrics use.

1.1 Historical Justification for OO
The management of software-intensive systems is relatively new. During the 1960s, the F-4 Phantom
used virtually no software in its weapon systems, and software was used sparingly in the DSP satel-
lite. During the 1970s, the rapid evolution of sophisticated electronic circuitry resulted in smaller
processors producing more computing power for a fraction of the cost. These advances, compounded
by more demanding requirements, dramatically increased DoD's software use. Figure 1.1-1 repre-
sents a summary of Air Force and NASA software system size growth between 1960 (Vietnam War)
and 1995 (post-Gulf War). [GSAM]

10,000

g 1.000

2-
o
£
to
2

SHUTTLE? F-J56 9i2 .«C^S
OPERATIONAL + T^|4^

Si A

F-22
PROJECTED

100

1975 1980
Year

1990

Guidelines fo Successful Acquisition Management of Software Intensive Systems. Version 3.0,
Department of the Air Force Software Technology Support Center, May 2000

Figure 1.1-1. Software complexity continues to increase. [GSAM]

Software management technologies have been crucial in keeping up with this explosion in software
capacity. Software development productivity measured from the start of development through final
qualification test has grown almost linearly from 1960 through the present. A simplified productivity
growth curve in Figure 1.1-2 shows this growth. The result shows software development productiv-
ity, increasing about one source line per person-month per year over the entire 30-year period. [JEN-
SEN] While no new technology has solved the software productivity problem, object technologies
have shown promise in improving the ability of software development organizations to field highly
complex software systems.

In order to determine which metrics will be the most useful to the object-oriented developer a com-
plete understanding of how OO techniques differ from traditional techniques is required. A historical
justification for the evolution to OO techniques, a comparison between traditional and OO design
methodologies, and a discussion on OO lifecycles is provided in Appendix C for this purpose.

1.2 Definitions of Relevant OO Terminology
The set of definitions included below have been provided based on utilization in this report.

Aggregate. An aggregate is (1) A class that represents the "whole" in an aggregation (whole-part)
relationship [OMG]. (2) A numeric value obtained by summing values at lower levels in the aggre-
gation structure.

Ancestor. The ancestors of a class include its parent classes and their ancestor classes.

Association. An association is a semantic relationship between two classes.

E a
Q.

>

o
a
o
a.

Ippm =
person

100

90

80

70

60

50

Ada

Process Maturity

Structured Analysis \

\

\
\
Object Oriented
Design

\

Structured Design

Structured Programming

3rd Generation Languages

1960 1980 1990
Lines per
month

1970
YEAR

Randall W. Jenson, Letter to the Editor, CROSSTALK. Vol. 13, No. 8, August 2000, p. 30.

Figure 1.1-2. Software productivity continues to increase.

Attribute. An attribute is (1) A characteristic of a process, product, or resource. Some attributes can
be measured or quantified through observing the product, process, or resource itself, or through
observing its behavior. Examples of attributes include size, completeness, volatility, complexity, and
traceability. (2) A data item that is encapsulated in a class along with its associated methods.
Adapted from Briand, Daly, and Wurst [BRIAND].

Child. In a generalization relationship, a child is the specialization of the parent. A child is also
called a subclass and is a descendant class of its parent classes.

Class. A class is a structure for OO development that encapsulates data (attributes) and functions
(methods). [BRIAND] Design requirements are allocated to classes.

Class Category. A class category is a logical collection of classes, some of which are visible to other
class categories and others of which are hidden. The classes in a class category collaborate to provide
a set of services. [BOOCH]

Complexity. Cyclomatic complexity is a measure of the complexity of a module's decision structure.
It is the number of linearly independent paths and, therefore, the minimum number of paths that
should be tested [MCCABE].

Dependency. A dependency is a relationship between two modeling elements in which a change to
one element (the independent element) affects the other element (the dependent element).

Descendant. The descendants of a class include its child classes and their descendant classes.

Inheritance. Inheritance is the mechanism by which specific classes incorporate the structure and
behavior of more general ancestor classes. Adapted from Object Management Group [OMG].

Method. A method is a procedure or function that is encapsulated in a class with its related data
(attributes). Other names for method include Operation, Service, and Member Function. Adapted
from Briand, Daly, and Wurst [BRIAND].

Object. An object is an instance of a class that has a well-defined boundary and identity that encap-
sulates state and behavior. Adapted from Object Management Group [OMG].

Object-Oriented Analysis (OOA). Object-oriented analysis is a methodology of analysis in which
requirements and potential high-level system structure are examined from the perspective of the
classes and objects found in the vocabulary of the problem domain. Adapted from Booch [BOOCH].

Object-Oriented Design (OOD). Object-Oriented Design is a methodology of design in which sys-
tem design is expressed in terms of classes and objects from the problem domain and relationships
between these classes and objects. OOD results in models of the system under design; each model
may be depicted by one or more diagrams that show structural, behavioral, and interface characteris-
tics of the system.

Object-Oriented (00) Development. Object-oriented development is development in which object-
oriented analysis, object-oriented design, and object-oriented programming methodologies are used to
produce software implementations. Note that some "object-oriented" development efforts may
choose to use one or more of OOA, OOD, or OOP, but not others.

Object-Oriented Programming (OOP). Object-oriented programming is an implementation method-
ology in which programs are organized as cooperative collections of objects, each of which represents
an instance of some class, and whose classes are all members of a hierarchy of classes united via
inheritance relationships. [BOOCH]

Parent. In a generalization relationship, a parent is a generalization of another element, the child. A
parent is also called a superclass and is an ancestor class of its child classes.

Use Case. A description of a set of related sequences of actions (scenarios), including variants, that a
system performs that yields an observable result of value to a particular actor (paraphrased from
Jacobson, Booch, and Rumbaugh [JACOBSON]). Functional requirements are allocated to use cases.

Scenario. A scenario is a specific sequence of actions that illustrates behavior. [JACOBSON] Also,
a scenario is a specific instance of a use case.

2. Metrics for Use with Object-Oriented Techniques

2.1 Overview of the Metrics Framework
The information presented in this section is a brief description of the framework described in Section
2.0 (Tailoring Software Measures) of the Practical Software Measurement (PSM). The PSM guide-
book is an extensive reference that describes how to define and implement a software measurement
process to support the information needs of software-intensive acquisition and development. The
PSM guidebook defines a Metrics framework that consists of 6 interrelated software issues. Issues
are defined as real or potential obstacles to the achievement of project objectives. These 6 issues are
then used to organize specific metrics into categories. This report extends the metric categories and
the metrics to include information pertinent to the 00 software developer.

The PSM guidebook groups software into six interrelated issues (see Figure 2.1-1) that are common
to all projects. These six issues are defined in the "Practical Software Measurement" metrics guide-
book and summarized below [PSM].

Development
Performance

Project
Resource

Growth
and

Stability
Technical
Adequacy

Product
Quality

Schedule
and

Progress

"Practical Software Measurement", Office of the Under Secretary of Defense for
Acquisition and Technology Joint Logistics Commanders Joint Group on Systems
Engineering (OUSD A&T JGSE), Version 3.1a, April 1998.

Figure 2.1-1. Interrelationship of metrics issues.

Schedule and Progress - This issue relates to the completion of major milestones and individual
work units. A project that falls behind schedule usually can make delivery only by eliminating func-
tionality or sacrificing quality.

Project Resources - This issue relates to the balance between the work to be performed and person-
nel resources assigned to the project. A project that exceeds the budgeted effort usually can recover
only by reducing software functionality or sacrificing quality.

Growth and Stability - This issue relates to the stability of the functionality or capability required of
the software. It also relates to the volume of software delivered to provide the required capability.
Stability includes changes in scope or quantity. An increase in software size usually requires
increasing the applied resources or extending the project schedule.

Product Quality - This issue relates to the ability of the delivered software product to support the
user's needs without failure. When poor quality product is developed, the burden of making it work
usually falls on the sustaining engineering organization.

Development Performance - This issue relates to the capability of the developer relative to project
needs. A developer with a poor software development process or low productivity may have diffi-
culty meeting aggressive schedule and cost objectives. More capable software developers are better
able to deal with project changes.

Technical Adequacy - This issue relates to the viability of the proposed technical approach. It
includes features such as software reuse, use of COTS software and components, and reliance on
advanced software development processes. Cost increases and schedule delays may result if key ele-
ments of the proposed technical approach are not achieved.

These common software issues can be used in two ways. First, the common software issues are used
to classify project-specific issues identified via risk analysis or other means so that they can be
mapped into the measurement selection structure. Second, reviewing the common software issues
helps both the acquirer and the developer to check that all potential issue areas have been considered.
[PSM]

Once the project-specific issues have been identified, appropriate measures must be selected to track
them. A measure is a quantification of a characteristic or attribute of a software process or product or
resource. Many different measures may apply to an issue. However, in most cases it is not practical
to collect all or even most of the possible measures for an identified issue. Generally, more measures
should be collected to track the high-priority issues. Identification of the "best" set of measures for a
project depends on a systematic evaluation of the potential measures with respect to the issues and
relevant project characteristics. Section 4.0 of this report on metrics selection provides additional
guidance on this topic.

A measurement category is a set of related measures. The measures within a category address related
software attributes. They provide similar information and answer similar questions about an issue. A
number of measurement categories for each software issue are identified in Figure 2.1-2, which lists
the categories for each issue.

Growth
and

Stability

Development
Performance

Project
Resource

Lines of Code
Components
Words of Memory
Database Size
Requirements
Function Points
Change Request Workload

-CMM Level
Product Size/
Effort Ratio

1— Functional Size/
Effort Ratio

Effort
Staff Experience

—Staff Turnover
Earned Value
Cost
Resource

-Availability Dates
L_ Resource Utilization

Product
Quality

Schedule
and

Progress

Technical
Adequacy

Problem Reports
Defect Density

- Failure Interval
Complexity

- Rework Size
Rework Effort

- Milestone Dates
- Component Status
- Test Case Status
- Paths Tested
- Problem Report

Status
- Reviews Completed
- Change Request

Status
u Build Content

•Component
•Functionality

"Practical Software Measurement", Office of the Under Secretary of Defense for Acquisition and
Technology Joint Logistics Commanders Joint Group on Systems Engineering (OUSD A&T JGSE)
Version 3.1a, April 1998.

Figure 2.1-2. Software issue to category mapping.

- CPU Utilization
CPU Throughput
I/O Utilization

- I/O Throughput
Memory Utilization

- Storage Utilization
Response Time

- Requirements
Accuracy
Impact of new
technology

2.2 Selection and Justification of OO-Unique Metrics
While this report's focus is on 00, it is important to recognize that conventional and 00 develop-
ments have many features in common. A software development project utilizing the 00 design
methodology and life cycle has the same software development issues as does a conventional project.
The following metrics have been selected for inclusion in this report based on an analysis of the
similarities and differences between OO developments and traditional development. The contrast
between OO and traditional development is documented in appendix C.

All of the attributes in the three common software issues of Development Performance, Technical
Adequacy, and Project Resources remain the same; that is to say, the metrics for these issues are
exactly the same in 00 as in conventional software development. The categories described in the
three common software issues of Growth and Stability, Product Quality, and Schedule and Progress
are slightly different. This relationship is summarized in Figure 2.2-1 and can be contrasted with
Figure 2.1-1. The issues highlighted in black are those of interest to the OO developer.

A number of measurement categories have been added and modified as a result of the use of OO
techniques. These are summarized in Figures 2.2-2, 2.2-3, and 2.2-4. The numbers circled in black
on each of these figures uniquely identify the measurement categories that have been modi-

Product
Quality

Schedule
and

Progress

Figure 2.2-1. Interrelationships of OO metrics issues.

Growth
and

Stability

OO Growth
and

Stability

transition

Lines of Code
Components
Words of Memory
Database Size
Requirements Volatility
Function Points
Change Request Workload

— Lines of Code
Size O
Words of Memory

— Database Size
Requirements Volatility ©

— Function Points
— Change Request Workload

Design Volatility ©

Figure 2.2-2. Software OO issue to category mapping for Growth and Stability.

Product
Quality

- Problem Reports
- Defect Density
- Failure Interval
- Complexity
- Rework Size
- Rework Effort

OO Product
Quality

transition

Problem Reports
Defect Density
Failure Interval
Complexity

- Rework Size
Rework Effort
Inheritance
Object Structure
Coupling

0
©

Figure 2.2-3. Software OO issue to category mapping for Product Quality.

Schedule
and

Progress

00 Schedul
and

Progress

- Milestone Dates (SSR,
PDR, CDR)

- Component Status
.Test Case Status
- Paths Tested

transition

Problem Report Status
- Reviews Completed
Change Request
Status
Build Content
•Component
•Functionality

— Milestone €fc»v
Class Status (M~

— Use Case Status "
Paths Tested
Problem Report Status
Reviews Completed
Change Request
Status

— Build Content
•Classes flj,
•Use Cases %

Figure 2.2-4. Software OO issue to category mapping for Schedule and Progress.

fied or added and that are of particular interest to the 00 developer. These identifying numbers are
one-to-one traceable to the metrics described in Section 3.0, Catalog of 00 Unique Metrics.

The three measurement categories selected for addition/modification in the Growth and Stability issue
are the Size, Requirements Volatility, and Design Volatility measurement categories. Each of these
relies on measurement values that are uniquely described in the 00 techniques. The size metric,
depending on the phase of the program, is defined by use-cases and class definitions. Requirement
Volatility is measured in Use-Cases, and Design Volatility is measured in Classes.

The three measurement categories selected for inclusion in the 00 Product Quality category are
Inheritance, Object Structure, and Coupling. These three measurement categories are new to the met-
rics framework.

Five measurement categories have been selected for modification and inclusion in the OO Schedule
and Progress category. These include: Milestone, Class Status, Use-Case Status, and Build Content
- classes and use cases. The modified measurement category is the Milestone metric. In general, this
measurement category has been modified to reflect an evolutionary terminology in the milestone
titles. The remaining four metrics are new to the metrics framework."

' The concept of Application Size and Method Size is discussed in LORENZ. ROSENBERG summarizes some of the
metrics described in LORENZ, and CHIDAMBER and maps the metrics to a set of quality critiera, including: Classes,
Message, Cohesion, Coupling and Inheritance.
2 Metrics for Class Inheritance, Method and Class Internals, and Class Externals are discussed in LORENZ. CHIDAMBER
provides information pertaining to the rationale for the use of the Weighted Methods per Class, Depth of Inheritance Tree,
Number of Children, Coupling between Object Classes, Response for Class, and Lack of Cohesion in Methods metrics.
ROSENBERG summarizes some of the metrics described in LORENZ and CHIDAMBER and maps the metrics to a set of
quality critiera, including: Classes, Message, Cohesion, Coupling, and Inheritance.

Metrics for Scheduling are discussed in LORENZ.

11

3. Catalog of Recommended 00 Unique Metrics

The recommended Object-Oriented Metrics consist of the set of 31 metrics identified in Table 3-1.
These metrics were selected by first performing an analysis of the differences between traditional
design methodology and Object-Oriented methodologies. These differences were then used to iden-
tify common issues in the PSM metrics framework [PSM] where metrics information would be
unique to an Object-Oriented development. Once this was accomplished, relevant metrics suitable to
fill in the metrics framework were identified based on an industry literature search and the author's
experiences. This analysis is summarized in Section 2.0, Metrics for use with Object-Oriented

Techniques.

The metrics described in the following sections are organized by common issues and metrics catego-
ries. This organization is similar to that found in the PSM framework. Each metric description con-
sists of a table describing the metric and an example metric report that indicates how the metric could
be represented. The metric table contains information on how the metric fits into the Metrics Frame-
work, a description of the measurements that make up the metric and how these are calculated, a dis-
cussion of the key principles related to the metric, a discussion of the example graphic, and some
"rules of thumb" for use during metrics analysis. Further information on general metrics analysis
topics can be obtained from the PSM Part 4, Applying Software Measures [PSM]. In each of the sub-
sequent charts, the acronym CRP stands for Current Reporting Period. Calculations for each of the
example metrics described in this section are provided in Appendix A. The numbers circled in black
in Table 3-1 are one-to-one traceable to the justification for the metric described in Section 2.2,
Selection and Justification of 00 unique Metrics.

A Note on Thresholds

Many of the metrics diagrams provided in the following sections contain thresholds. These
thresholds have been provided as guidance only and are based on either (1) published best
practices or (2) the experiences of the author. All thresholds are to be applied at the discre-
tion of the reader, no threshold value is absolute, and all threshold values are subject to tai-
loring. It is the author's opinion, however, that where thresholds are supplied in the metrics
diagrams, they should be incorporated as part of the metrics program, as tailored by the
using organization. The application of thresholds is to ensure that some action is taken when
a threshold is exceeded. When thresholds do not exist, there is no indication of what would
be considered "good" or "bad, " and, therefore, no indication of when action needs to be
considered.

13

Table 3-1. Object-Oriented Metrics

ISSUE CATEGORY RECOMMENDED METRICS

Growth and
Stability

£)Size Plan vs Actual Use Cases Completed
Plan vs Actual Classes Completed
Number of Attributes in a Class
Number of Methods in a Class
Number Scenarios in a Use Case

^S^ Requirements
Volatility

Added, Deleted and Modified Use Cases

^^ Design Volatility Added, Deleted and Modified Classes
Added, Deleted and Modified Methods
Added, Deleted and Modified Attributes

Product
Quality

#fc Inheritance Number of Children per Class
Depth of Inheritance Tree per Class

£fc Object Structure Weighted Methods per Class
Type of Methods in Class

(|) Coupling Coupling Between Classes
Response for a Class

Schedule
and
Progress

^^ Milestone Plan vs Actual Milestone Days
Milestone Slip Ratio

^^ Class Status Plan vs Actual Classes Completed
Plan vs Actual Methods Completed
Plan vs Actual Attributes Completed
Class Traceability Status
Integration Test Traceability Status
Plan vs Actual Classes that have Successfully Passed Integration Test

tf^Use Case Status Plan vs Actual Use Cases Completed
Use Case Traceability Status
Functional Test Traceability Status
Plan vs Actual Use Cases that have Successfully Passed Functional Test

^Jg) Build Content -
Classes

Plan vs Actual Classes in Build
Ratio of Classes in Build

{£) Build Content -
Use Cases

Plan vs Actual Use Cases in Build
Ratio of Use Cases in Build

3.1 Growth and Stability
The numbers circled in black in Table 3.1-1 are one-to-one traceable to the justification for the metric
described in Section 2.2, Selection and Justification of 00 unique Metrics.

Table 3.1-1 identifies each of the metrics selected for Growth and Stability.

Table 3.1-1 Growth and Stability OO Metrics

ISSUE
Growth and
Stability

CATEGORY
Size

{^ Requirements
Volatility

^} Design Volatility

RECOMMENDED METRICS
Plan vs Actual Use Cases Completed
Plan vs Actual Classes Completed
Number of Attributes in a Class
Number of Methods in a Class
Number Scenarios in a Use Case
Added, Deleted and Modified Use Cases

Added, Deleted and Modified Classes
Added, Deleted and Modified Methods
Added, Deleted and Modified Attributes

14

3.1.1 Size
Size measures the physical size of a software product. Product size is a critical factor for estimating
development schedule and cost. Size measures also provide information about the amount and
frequency of change to a software product, which is especially critical late in the development.

15

3.1.1.1 Plan versus Actual Use Cases Completed

Issue
Category
Measure

Description

Example
Graph

Performance
Analysis

Growth and Stability

Size
Planned number of use cases to be completed during the CRP
Actual number of use cases completed during the CRP
Calculate cumulative number of use cases planned to be complete (ref. App. A, (a))
Calculate cumulative number of use cases actually completed (ref. App. A, (a))
Use cases describe the functionality required of the system based on the user view-
point. The number and magnitude of the use cases defined for a particular applica-
tion then becomes an indicator of software size. Unplanned additions and changes
to the number and magnitude of use cases can adversely influence schedules and
costs.
A line chart combined with a bar chart (Figure 3.1-1) is used to present the size
information. The information presented includes the planned number of use cases
and the actual number of use cases plotted over time. A cumulative value is
included in the line chart and a CRP plan/actual is provided in the bar charts.
Actual values should track to the plan. Deviations of actuals above the plan line
indicate that more is being accomplished than was originally projected. Deviations
of actuals below the plan line indicate that less is being accomplished than origi-
nally projected.

Plan
Actual
Cum Plan
Cum Act

week 1
3
1
3
1

week 2
5
3

week 3
7
6
15
10

week 4 week 5 week 6 week 7 week 8 week 9 week 10 week 11 week 12

4 6 10 6 4 7 3 1 1

3 7 8 9 5 7 3 2 1

19 25 35 41 45 52 55 56 57

13 20 28 37 42 49 52 54 55

Plan vs Actual Use Cases Completed

ESDPIan
^■Actual
■«■•Cum Plan
-*— Cum Act

week week week week week week week week week week week week
1 2 3 4 5 6 7 8 9 10 11 12

Time

Figure 3.1-1. Plan versus actual use cases completed.

16

3.1.1.2 Plan versus Actual Classes Completed

Issue Growth and Stability

Category Size

Measure

Description

Example
Graph

Performance
Analysis

Planned number of classes to be completed during the CRP
Actual number of classes completed during the CRP
Calculate cumulative number of classes planned to be complete (ref. App. A, (b))
Calculate cumulative number of classes actually completed (ref. App. A, (b))
This indicator provides an estimate of software size in terms of design components.
Unplanned additions and changes to the number and magnitude of classes can
adversely influence schedules and costs.
A line chart combined with a bar chart (Figure 3.1-2) is used to present the size
information. The information presented includes the planned number of classes
and the actual number of classes plotted over time. A cumulative value is included
in the line chart and a CRP plan/actual is provided in the bar charts.
Actual values should track to the plan. Deviations of actuals above the plan line
indicate that more is being accomplished than was originally projected. Deviations
of actuals below the plan line indicate that less is being accomplished than origi-
nally projected.

week 1 week 2 week 3 week 4 week 5 week 6 week 7 week 8 week 9 week 10 week 11 week 12
Plan 5 7 10 6 8 12 8 6 9 5 2 1
Actual 4 5 8 5 9 12 11 6 9 4 3 2
Cum Plan 5 12 22 28 36 48 56 62 71 76 78 79
Cum Act 4 9 17 22 31 43 54 60 69 73 76 78

Plan vs Actual Classes Completed

ma Plan
■■Actual
-*--Cum Plan
-*— Cum Act

week week week week week week week week week week week week
1 2 3 4 5 6 7 8 9 10 11 12

Time

Figure 3.1-2. Plan versus actual classes completed.

17

3.1.1.3 Number of Attributes in a Class
Issue
Category

Measure

Description

Example
Graph

Performance
Analysis

Growth and Stability
Size

CRP number of attributes in each class
CRP number of classes
Calculate cumulative number of classes/ cumulative number of attributes (ref. App.
A, (c))
Calculate CRP number of classes/ CRP number of attributes (ref. App. A, (c))
The number of attributes in a class is one measure of its size. A class that has mul-
tiple data objects may indicate that the class has a number of unnecessary special-
ized relationships with other classes in the system. Lower threshold calculated
value should not be below 50%.
A line chart combined with a bar chart (Figure 3.1-3) is used to present the size
information. The information presented includes the cumulative ratio value of
attributes in a class. This is augmented by a bar chart indication of the CRP ratio
value. Lower thresholds are indicated on the chart as well.
A large number of attributes in a class are an indication that the class may be doing
too much. For values falling below the threshold, the unique class may be unneces-
sary. Review the system classes for optimization through combination.

week 1 week 2 week 3 week 4 week 5 week 6 week 7 week 8 week 9 week 10 week 11 week 12

Attributes 7 8 12 5 11 16 13 9 3 5 6 2

Classes 4 5 8 5 9 12 11 6 9 4 3 2

Cum Attributes 7 15 27 32 43 59 72 81 84 89 95 97

Cum Classes 4 9 17 22 31 43 54 60 69 73 76 78

Ratio 0.57 0.63 0.67 1.00 0.82 0.75 0.85 0.67 3.00 0.80 0.50 1.00

Cum Ratio 0.57 0.60 0.63 0.69 0.72 0.73 0.75 0.74 0.82 0.82 0.80 0.80

Upper Bound 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75

Lower Bound 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

Number of Attributes in a Class

1.
E 0.
5 o.

w ~ n 2 _
ü 3 0.
E
3
Ü

-
-*- • _

-
" —

.- If — — ,

--
—

■

lilt

m •• i
■

.
— —

I 1 i

1 1 1 1 1 1 1

Ratio
Cum Ratio
Lower Bound

week week week week week week week week week week week week
1 2 3 4 5 6 7 8 9 10 11 12

Time

Figure 3.1-3. Number of attributes per class.

3.1.1.4 Number of Methods in a Class

Issue
Category

Growth and Stability
Size

Measure

Description

Example
Graph

Performance
Analysis

Methods
Classes
Cum Methods
Cum Classes
Ratio
Cum Ratio
Upper Bound

CRP number of methods in each class
CRP number of classes
Calculate cumulative number of classes/ cumulative number of methods (ref. App.
A, (d))
Calculate CRP Number of classes/ CRP Number of methods (ref. App. A, (d))
The number of methods in a class is one measure of its size. The number of class
methods indicates the amount of commonality being handled. A high number can
indicate poor design when global services are used for all functions. Upper
threshold calculated value should not exceed 80%.
A line chart combined with a bar chart (Figure 3.1-4) is used to present the size
information. The information presented includes cumulative ratio value of meth-
ods in a class. This is augmented by a bar chart indication of the CRP ratio value.
The upper threshold is indicated on the chart as well.
This metric measures the degree of specialization for a generic object. For values
above the threshold, review the class methods looking for behavior that should be
specific to the class. There is no minimum value threshold for methods in aclass.

week 1 week 2 week 3 week 4 week 5 week 6 week 7 week 8 week 9 week 10 week 11 week 12

9
4
4
9

0.44
0.44
0.8

10
5
9
19

0.50
0.47
0.8

15
8
17
34

0.53
0.50
0.8

7
5
22
41
0.71
0.54
0.8

15
9
31
56
0.60
0.55
0.8

17
12
43
73
0.71
0.59
0.8

15
11
54
88
0.73
0.61
0.8

12
6
60
100
0.50
0.60
0.8

5
9
69
105
1.80
0.66
0.8

7 8 3
4 3 2
73 76 78
112 120 123
0.57 0.38 0.67
0.65 0.63 0.63
0.8 0.8 0.8

Ü

Ü

1.00

0.90

0.80

0.70

0.60

0.50

0.40

0.30

0.20

0.10

Number of Methods in a Class

'. ~J|l^XL-.».—.^^—2—'—FT- mm Ratio
-•—Cum Ratio

—Upper Bound

week
1

week
2

week
3

week
4

week
5

week
6

week
7

week
8

week week
10

week
11

week
12

Time

Figure 3.1-4. Number of methods per class.

19

3.1.1.5 Number of Scenarios in a Use Case

Issue
Category

Growth and Stability
Size

Measure

Description

Example
Graph

Performance
Analysis

CRP number of use cases
CRP number of scenarios per use case
Calculate CRP number of uses cases/ CRP number of scenarios (ref. App. A, (e))
Calculate cumulative number of use cases/ cumulative number of scenarios (ref.
App. A, (e))
The number of scenario scripts is an indication of the size of the application to be
developed. The number of scenario scripts also relates to the number of test cases
that must be written to fully exercise the system. Upper value threshold should not
exceed 60%. Lower value threshold should not exceed 40%.
A line chart combined with a bar chart (Figure 3.1-5) is used to present the size
information. The information presented includes cumulative ratio value of scenar-
ios in use case. This is augmented by a bar chart indication of the CRP ratio value.
Thresholds are indicated on the chart as well.
The number of scenarios in a use case is an indication of user functionality pro-
vided. A scenario-to-use-case ratio that falls above the 60% threshold is an indica-
tion that too much functionality is being described in a single use case. An attempt
should be made to simplify the design. Should this value fall below the indicated
40% threshold, the use cases should be reviewed for optimization opportunities.

week 1 week 2 week 3 week 4 week 5 week 6 week 7 week 8 week 9 week 10 week 11 week 12

Scenarios 3 8 9 6 8 8 8 8 3 5 2 2

Use Cases 1 3 4 4 5 5 2 3 5 1 1 1

Cum Scenarios 1 4 8 12 17 22 24 27 32 33 34 35

Cum Use Cases 3 11 20 26 34 42 50 58 61 66 68 70

Ratio 0.33 0.38 0.44 0.67 0.63 0.63 0.25 0.38 1.67 0.20 0.50 0.50

0.33 0.36 0.40 0.46 0.50 0.52 0.48 0.47 0.52 0.50 0.50 0.50

Upper Bound 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6

Lower Bound 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4

Number of Scenarios in a Use Case

E
3
Ü

o 8

3 OT

1.00 -,
0.90 -
0.80 -
0.70 ■ , , ,
0.60 -

w 0.50 -
r-7-u——

-« »-— imi •I

-
— !p~

0.30 • s? 0.20 -
0.10 • , M , —i—

'-'•■

3 Ratio
-Cum Ratio
-Upper Bound
-Lower Bound

week week week week week week week week week week week week
1 2 3 4 5 6 7 8 9 10 11 12

Time

Figure 3.1-5. Number of scenarios per use case.

20

3.1.2 Requirements Volatility
Use Case volatility measures the stability of the required functionality of a software product. Use
case volatility may be used to estimate development schedule and cost. This measure provides
information about the amount and frequency of change to software functionality, which is especially
critical late in the development. Use case volatility generally correlates with effort, cost, schedule,
and product size changes.

Many of the volatility metrics rely on a "base" size value being included in the calculations. The
"base" value is used as the basis on which the requirements design or code will be modified. This
concept is necessary for use with incremental, evolutionary, or reuse-driven developments as the
requirements, design, and code are not being written from scratch but rely on existing products for
modification. The "base" value is that portion of the integrated software product that would be con-
sidered pre-existing. During the initial iteration of the product life cycle for newly developed soft-
ware, this value would be set to zero.

The churn ratios calculated on the subsequent metrics charts reflect a normalized numeric value asso-
ciated with how much of the product has been modified over time. A churn ratio approaching 1
reflects that the product has been designed more than once. This can be misleading due to the fact
that you can have components of the product that are designed many times, whereas other portions of
the product may have only been designed once.

21

3.1.2.1 Added, Deleted and Modified Use Cases

Issue
Category

Growth and Stability
Requirements Volatility

Measure CRP planned number of use cases
CRP actual base number of use cases
CRP actual added number of use cases
CRP actual deleted number of use cases
CRP modified number of use cases (which includes all changed aspects of the use
case definition)
Calculate cumulative planned number of use cases (ref. App. A, (f))
Calculate cumulative actual number of use cases (ref. App. A, (f))
Calculate churn ratio (scaled ratio of CRP modified use cases to cummulative
actual use cases) (ref. App. A, (f))

Description

Example
Graph

Performance
Analysis

The Added, Deleted Modified Use-Case indicator can be used to monitor changes
to requirements throughout a project, which can serve as a leading indictor of
delays, cost increases and rework. The churn ratio is provided as an indicator of the
amount of rework being accomplished for a given use case.
A line chart combined with a bar chart (Figure 3.1-6) is used to present the volatil-
ity information. The information presented includes the cumulative number of use
cases. This is augmented by a bar chart indication of the CRP number of modified,
added and deleted use cases.
A high level of use case volatility may require adjustment to current resource allo-
cations, effort estimates, budgets, and schedule. The churn ratio should be consis-
tent with the system phase. (Sometimes it is a measure of rework, other times
expected work.) In addition, adding and deleting of use cases late in a project
could indicate an unstable analysis process.

week 1 week 2 week 3 week 4 week 5 week 6 week 7 week 8 week 9 week 10 week 11 week 12

Plan 3 5 7 4 6 10 6 4 7 3 1 1

Base 0 0 0 0 0 0 0 0 0 0 0 0

Added 1 7 10 5 8 8 9 12 10 4 6 2

Deleted 0 3 2 7 0 2 1 4 0 4 1 1

Modified 2 3 8 5 4 12 15 30 8 9 26 10

Actual 1 4 8 -2 8 6 8 8 10 0 5 1

Cum Plan 3 8 15 19 25 35 41 45 52 55 56 57

Cum Actual 1 5 13 11 19 25 33 41 51 51 56 57

Churn Ratio 2.00 0.60 0.62 0.45 0.21 0.48 0.45 0.73 0.16 0.18 0.46 0.18

Added, Deleted and Modified Use Cases

M Modified
■ Deleted
3Added

— —Churn Ratio
—i—Cum Actual
--•--Cum Plan

Time

Figure 3.1-6. Added, deleted and modified use cases.

22

3.1.3 Design Volatility
Class volatility measures the stability of the design of a software product. Class volatility can be used
to estimate downstream testing and rework costs. Method/attribute volatility measures the stability of
a software product. These measures provide information about the amount and frequency of change
to software design, which is especially critical late in the development. Method/attribute and class
volatility generally correlates to effort, cost, schedule, and product size changes.

See paragraph 3.1.2 for a description of the concepts of "base" and "churn ratio."

23

3.1.3.1 Added, Deleted and Modified Classes

Issue
Category

Growth and Stability
Design Volatility

Measure

Description

Example
Graph

Performance
Analysis

CRP planned number of classes
CRP actual base number of classes
CRP actual added number of classes
CRP actual deleted number of classes
CRP modified number of classes (which includes all changed aspects of the class
definition)
Calculate cumulative planned number of classes (ref. App. A, (g))
Calculate cumulative actual number of classes (ref. App. A, (g))
Calculate churn ratio (scaled ratio of modified classes to base) (ref. App. A, (g))
This indicator can be used to monitor changes to design throughout a project,
which can serve as a leading indictor of delays, cost increases and rework. The
churn ratio is provided as an indicator of the amount of rework being
accomplished.
A line chart combined with a bar chart (Figure 3.1-7) is used to present the volatil-
ity information. The information presented includes the cumulative number of
classes. This is augmented by a bar chart indication of the number of CRP modi-
fied, added and deleted classes.
A high level of class volatility may require adjustment to current resource alloca-
tions, effort estimates, budgets, and schedule. The churn ratio should be consistent
with the system phase. (Sometimes it is a measure of rework, other times expected
work.) In addition, adding and deleting of classes late in a project could indicate an
unstable design process.

week 1 week 2 week 3 week 4 week 5 week 6 week 7 weeks week 9 week 10 week 11 week 12

Plan 3 5 7 4 6 10 6 4 7 3 1 1

Base 0 0 0 0 0 0 0 0 0 0 0 0

Added 1 6 10 9 12 6 6 6 8 12 5 3

Deleted 0 3 2 7 0 2 1 4 0 4 1 1

Modified 2 2 6 7 6 6 10 7 12 20 30 20

Actual 1 3 8 2 12 4 5 2 8 8 4 2

Cum Plan 3 8 15 19 25 35 41 45 52 55 56 57

Cum Actual 1 4 12 14 26 30 35 37 45 53 57 59

Churn Ratio 2.00 0.50 0.50 0.50 0.23 0.20 0.29 0.19 0.27 0.38 0.53 0.34

Added, Deleted and Modified Classes

M Modified
■ Deleted
»I Added

-—Churn Ratio
H— Cum Actual
• --Cum Plan

Time

Figure 3.1-7. Added, deleted and modified classes.

24

3.1.3.2 Added, Deleted and Modified Methods

Issue
Category

Growth and Stability
Design Volatility

Measure

Description

Example
Graph

Performance
Analysis

CRP planned number of methods
CRP actual base number of methods
CRP actual added number of methods
CRP actual deleted number of methods
CRP actual modified number of methods (which includes all changed aspects of the
method description)
Calculate cumulative planned number of methods (ref. App. A, (i))
Calculate cumulative actual number of methods (ref. App. A, (i))
Calculate churn ratio (scaled ratio of modified methods to base) (ref. App. A, (i))
This indicator can be used to monitor changes to design throughout a project,
which can serve as a leading indictor of delays, cost increases and rework. The
churn ratio is provided as an indicator of the amount of rework being accomplished
for a given method.
A line chart combined with a bar chart (Figure 3.1-8) is used to present the volatil-
ity information. The information presented includes the cumulative number of
methods. This is augmented by a bar chart indication of the CRP numbers of modi-
fied, added and deleted methods.
A high level of method volatility may require adjustment to current resource allo-
cations, effort estimates, budgets, and schedule. The churn ratio should be consis-
tent with the system phase. (Sometimes it is a measure of rework, other times
expected work.) In addition, adding and deleting of methods late in a project could
indicate an unstable design process.

week 1 week 2 week 3 week 4 week 5 week 6 week 7 week 8 week 9 week 10 week 11 week 12

Plan 5 7 10 6 8 12 8 6 9 5 2 1

Base 0 0 0 0 0 0 0 0 0 0 0 0

Added 5 6 12 14 12 10 8 8 8 14 8 2

Deleted 1 1 2 7 0 2 3 5 0 5 1 1

Modified 2 2 3 3 5 4 6 12 15 5 1 0

Actual 4 5 10 7 12 8 5 3 8 9 7 1

Cum Plan 5 12 22 28 36 48 56 62 71 76 78 79

Cum Actual 4 9 19 26 38 46 51 54 62 71 78 79

Churn Ratio 0.50 0.22 0.16 0.12 0.13 0.09 0.12 0.22 0.24 0.07 0.01 0.00

Added, Deleted and Modified Methods

1 Modified
■ Deleted
3Added

——Churn Ratio
—i— Cum Actual
--••-Cum Plan

Time

Figure 3.1-8. Added, deleted and modified methods.

25

3.1.3.3 Added, Deleted and Modified Attributes

Issue
Category

Growth and Stability
Design Volatility

Measure

Description

Example
Graph

Performance
Analysis

Plan
Base
Added
Deleted
Modified
Actual
Cum Plan
Cum Actual
Churn Ratio

week 1
5
0
5
1
2
4
5
4

0.50

CRP planned number of attributes
CRP actual base number of attributes
CRP actual added number of attributes
CRP actual deleted number of attributes
CRP actual modified number of attributes (which includes all changed aspects of
the attribute definition)
Calculate cumulative planned number of attributes (ref. App. A, (k))
Calculate cumulative actual number of attributes (ref. App. A, (k))
Calculate churn ratio (scaled ratio of modified methods to base) (ref. App. A, (k))
This indicator can be used to monitor changes to design throughout a project,
which can serve as a leading indictor of delays, cost increases and rework. The
churn ratio is provided as an indicator of the amount of rework being accomplished
for a given attribute.
A line chart combined with a bar chart (Figure 3.1-9) is used to present the volatil-
ity information. The information presented includes the cumulative number of
attributes. This is augmented by a bar chart indication of the CRP number of modi-
fied, added and deleted attributes.
A high level of attribute volatility may require adjustment to current resource allo-
cations, effort estimates, budgets, and schedule. The churn ratio should be consis-
tent with the system phase. (Sometimes it is a measure of rework, other times
expected work.) In addition, adding and deleting of attributes late in a project
could indicate an unstable design process.

week 2
7
0
6
1
2
5
12
9

0.22

week 3
10
0
8
2
3
6
22
15

0.20

week 4
6
0
10
7
10
3
28
18

0.56

week 5
8
0
10
0
6
10
36
28
0.21

week 6
12
0
12
2
8
10
48
38
0.21

week 7
8
0
10
3
12
7
56
45
0.27

week 8
6
0
15
5
16
10
62
55
0.29

week 9
9
0
13
0
19
13
71
68
0.28

week 10
5
0
9
5
19
4
76
72
0.26

week 11
2
0
6
1
7

5
78
77
0.09

week 12
1
0
5
1
9
4
79
81
0.11

Added, Deleted and Modified Attributes

M Modified

■ Deleted

3 Added

—"■—Churn Ratio

—i—Cum Actual

--••-Cum Plan

Time

Figure 3.1-9. Added, deleted and modified attributes.

26

3.2 Product Quality
The numbers circled in black in Table 3.2-1 are one-to-one traceable to the justification for the metric
described in Section 2.2 Selection and Justification of 00 unique Metrics. Table 3.2-1 identifies the
metrics selected for Product Quality.

Table 3.2-1. Product Quality Metrics

ISSUE CATEGORY RECOMMENDED METRICS
Product
Quality

^^ Inheritance Number of Children per Class
Depth of Inheritance Tree per Class

4^ Object Structure Weighted Methods per Class
Type of Methods in Class

(g) Coupling Coupling Between Classes
Response for a Class

3.2.1 Inheritance
Inheritance measures the structure of software components, based on the number of children. Com-
plex components are generally harder to test, are more difficult to maintain, and may contain more
defects than less complex components. Inheritance measures may provide indications of the need to
redesign. In addition, inheritance metrics can be used to ascertain the effects of change to a given
component. A seemingly small change to a parent can affect all of the children and grandchildren
adversely. Determining the inheritance for a class can help establish how widespread changes to a
parent class actually are.

27

Product Quality
Inheritance

3.2.1.1 Number of Children per Class
Issue
Category

Measure

Description

Count the number of children for each class
Sum the number of classes having the same number of children

The number of children per class measures the number of immediate subclasses
subordinated to a class in the class hierarchy. This is a measure of the horizontal
breadth of the class structure. Threshold: 80% of the classes in the system should
have 7 or more inherited subclasses.

Example
Graph

Performance
Analysis

A histogram (Figure 3.2-1) is used to present the structure information. The infor-
mation presented includes the number of classes containing a particular number of
children classes.

The percentage of children inherited should be high. The greater the number of
children, the greater the reuse, since inheritance is a form of reuse. There is no
lower threshold for this metric.

Count
9

150
8

100
7

80
6

50

5 4 3 2 10 Median Mode Average
30 20 0 0 0 0 8 9 7.46

Number of Children per Class

160

S 140
Threshold value 80%
of classes > 6

Number of Children

Figure 3.2-1. Number of children per class.

28

3.2.1.2 Depth of Inheritance Tree (PIT) per Class
Issue
Category

Measure

Description

Example
Graph

Performance
Analysis

Product Quality
Inheritance

Count the number of nodes from each class to the root of the inheritance tree
Sum the number of classes containing the same number of nodes between it and the
root of the inheritance tree
In cases involving multiple inheritance, the DIT will be the maximum length from
the node to the root of the tree. This is a measure of the vertical depth of the class
structure. Threshold: 80% of the classes in the system should have less than 6
inheritance levels.
A histogram (Figure 3.2-2) is used to present the structure information. The infor-
mation presented includes the number of classes with a particular class tree depth.

Large numbers of nesting levels in a class structure is an indication that too many
classes have been created in the system. The deeper a class is in the hierarchy, the
greater the number of methods it is likely to inherit, making it more difficult to
predict its behavior. A nesting level of less than 6 should be maintained throughout
the system.

Count
0

100
1

75
2

75
3

50
4

40
5

30
6

20
7
10

Median Mode
2 0

Average
2.19

Depth of Inheritance Tree per Class

120

Ö

Threshold value: 80%
of classes < 6

3 4 5

Class Tree Depth

Figure 3.2-2. Depth of inheritance tree per class.

29

3.2.2 Object Structure
The structure of software is measured using object structure measures. Complex objects are generally
harder to test, are more difficult to maintain, and may contain more defects than less complex objects.
Object structure measures provide indications of the need to redesign and of the relative amount of
testing required.

30

3.2.2.1 Weighted Methods per Class
Issue
Category

Product Quality
Object Structure

Measure

Description

Example
Graph

Performance
Analysis

Identify the complexity of each method (by using a static code analyzer tool)
[MCCABE]
For each class sum the complexity for each method in the class into a class
complexity
Sum the number of classes containing equivalent levels of class complexity
This measure describes the complexity of a class through the complexity of its
methods. Threshold: class complexity should not exceed 70.

A histogram (Figure 3.2-3) is used to present the structure information. The infor-
mation presented includes the number of classes having a particular class
complexity.

A more complex class is more difficult to maintain. There are reasons, however, to
have classes that have a higher degree of complexity. Overall, however, the
majority of the system should not be made up of highly complex classes. Classes
that exhibit a cumulative complexity of 70 or over should be examined to ensure
that their complexity is justified. When this occurs it is an indication that all the
classes should be reviewed to ensure that only those classes required to be highly
complex are.

Count
0-9
100

10-19
75

20-29 30-39 40-49
75 50 40

50-59
30

60-69 70-79
20 10

80-89
0

>90
0

Median Mode Average
20 0 21.88

Weighted Methods per Class

Threshold Value:
Class Complexity
<70

0-9 10-19 20-29 30-39 40-49 50-59 60-69 70-79 80-89 >90

Class Complexity

Figure 3.2-3. Weighted methods per class.

31

3.2.2.2 Type of Methods in Class

Issue
Category

Product Quality
Object Structure

Measure

Description

Example
Graph

Performance
Analysis

Number of CRP classes
Number of CRP methods per class
Number of CRP private methods per class
Number of CRP protected methods per class
Number of CRP public methods per class
Calculate cumulative number or private methods per class (ref. App. A, (1))
Calculate cumulative number of protected methods per class (ref. App. A, (1))
Calculate cumulative number of public methods per class (ref. App. A, (1))
The number of public methods in a class is a measure of the amount of system
functionality being provided by the class. In addition, the number of public meth-
ods is a reflection of the total number of methods provided by the class, because
each public method is supported by some number of private methods. Threshold
value: Non-public methods should not exceed 80% of design.
A 100% stacked column (Figure 3.2-4) is used to present the method type informa-
tion. The information presented compares the percentage of each method type that
contributes to the total across the method types.

The comparison of public to non-public methods in a class is an indication of the
amount of work being performed by the class. As a goal at least 20% of all meth-
ods should be public. In addition, classes with large percentages of public methods
should be examined to determine if some of those should be made private or
protected.

week 1 week 2 week 3 week 4 weeks week 6 week 7 week 8 week 9 week 10 week 11 week 12

Classes 4 5 8 5 9 12 11 6 9 4 3 2
Methods 9 10 15 7 15 17 15 12 5 7 8 3
tt Private 4 5 7 4 9 12 8 7 3 5 4 1
Protected 3 3 5 1 3 4 6 3 1 0 2 1
Public 2 2 3 2 3 1 1 2 1 2 2 1
Cum Private 4 9 16 20 29 41 49 56 59 64 68 69
Cum Protected 3 6 11 12 15 19 25 28 29 29 31 32
Cum Public 2 4 7 9 12 13 14 16 17 19 21 22

Type of Methods in Class

100% I

Threshold value:
Non-Public

■ methods < 80%

□ Cum Public

^Cum Protected

■ Cum Private

week week week week
9 10 11 12

Figure 3.2-4. Type of methods class.

32

3.2.3 Coupling
Coupling measures the degree to which the classes of the system interchange information. There are
two measures of coupling. The first is the amount of data that is passed between the classes. The
second is the number of responses possible for any given method invocation. A system with a high
degree of coupling can be difficult to maintain.

33

Product Quality

Coupling

Count the number of methods called per class
Sum the number of classes calling a particular number of methods

3.2.3.1 Coupling Between Classes

Issue
Category

Measure

Description

Example
Graph

Performance
Analysis

This metric provides a profile of the number of other classes with which a particu-
lar class communicates (i.e.,., counts the number of external methods called by a
particular class).
A histogram (Figure 3.2-5) is used to present the structure information. The infor-
mation presented includes the number of classes that call a particular number of
methods.

Excessive coupling between object classes is detrimental to modular design and
prevents reuse. The more independent a class is, the easier it is to reuse in another
application. In order to improve modularity and promote encapsulation, class cou-
pling should be kept to a minimum. The larger the number of couples, the higher
the sensitivity to changes in other parts of the design. A measure of coupling is
useful to determine how complex the testing of various parts of the design is likely
to be. The higher the class coupling, the more rigorous the testing needs to be. No
threshold has been defined for this metric.

Count
0-4
140

5-9
115

10-14 15-19
80 50

20-24
35

25-29
30

30-34
20

35-39
15

40-44
10

>45
5

Median
3

Mode
0

Average
10.65

Coupling Between Classes

160

^■=F
0-4 5-9 10-14 15-19 20-24 25-29 30-34 35-39 40-44

Number of Methods Called per Class

>45

Figure 3.2-5. Coupling between classes.

34

3.2.3.2 Response for a Class(RFC)
Issue
Category

Product Quality
Coupling

Measure

Description

Example
Graph

Performance
Analysis

Number of methods in other classes that can respond to any message sent by the
class under consideration
Number of classes that respond to the messages
The response set of a class is a count of methods accessible to an object of this
class type due to inheritance.

A histogram (Figure 3.2-6) is used to present the structure information. The infor-
mation presented includes the number of classes having a particular number of
methods in its response set.

Count
0

50

This metric measures the degree of class coupling. A low level of coupling is nec-
essary to reduce system complexity. Therefore, the optimal RFC metric would be
to have the largest number of classes contained in the lower response categories.
No thresholds have been provided for this metric.

1 234 567 89 Median Mode Average
100 75 65 50 30 20 10 0 0 2 0 2.19

120
(0

S 10°
(0
« 80
O
"5 60

40 0)

E
= 20

0

Response for a Class

* ÜE
2 3 4 5 6

Number of Class Responses

Figure 3.2-6. Response for a class.

35

3.3 Schedule and Progress
The numbers circled in black in Table 3.3-1 are one-to-one traceable to the justification for the metric
described in Section 2.2, Selection and Justification of 00 unique Metrics. Table 3.3-1 identifies the
metrics selected for Schedule and Progress. The metrics included in the Schedule and Progress sec-
tion must be linked to the Integrated Master Plan (IMP) and Integrated Master Schedule (IMS) to be
useful in managing the 00 development. [IMP/IMS] The prudent project manager of an 00 devel-
opment effort must ensure that the appropriate terminology is reflected in these program-level docu-
ments. In addition, the management system used to track the 00 development, generically referred
to as the Earned Value Management System (EVMS), must also reflect the terminology of the 00
development.

Table 3.3-1. Schedule and Progress Metrics.

ISSUE CATEGORY RECOMMENDED METRICS

Schedule
and
Progress

^^ Milestone Plan vs Actual Milestone Days
Milestone Slip Ratio

4^ Class Status Plan vs Actual Classes Completed
Plan vs Actual Methods Completed
Plan vs Actual Attributes Completed
Class Traceability Status
Integration Test Traceability Status
Plan vs Actual Classes that have Successfully Passed Integration Test

^^Use Case Status Plan vs Actual Use Cases Completed
Use Case Traceability Status
Functional Test Traceability Status
Plan vs Actual Use Cases that have Successfully Passed Functional Test

^Q) Build Content -
Classes

Plan vs Actual Classes in Build
Ratio of Classes in Build

^D Build Content -
Use Cases

Plan vs Actual Use Cases in Build
Ratio of Use Cases in Build

3.3.1 Milestone
The milestone performance measure provides basic schedule and progress information for key soft-
ware development activities and events. The measures also help to identify and assess dependencies
among software development activities and events. Monitoring changes in schedule allows the proj-
ect manager to assess the risk in achieving future milestones. Milestone metrics are not unique to
object-oriented development. However, when the OO-specific life-cycle model (described in Appen-
dix C) is used, different milestones are defined with different names than the traditional milestones
used in non-OO developments. (An example of an OO-specific life-cycle model would be that which
is described in the Rational Unified Process (RUP). [RATIONAL]) The metrics described in this
section have been adapted to use the OO-specific milestones. Some object-oriented implementations
may, however, use the traditional milestone terminology, in which case the traditional milestone met-
rics would be used instead.

36

3.3.1.1 Plan vs. Actual Milestone Days

Issue
Category

Schedule and Progress
Milestone

Measure

Description

Example
Graph

Performance
Analysis

Planned milestone completion date
Actual milestone completion date
Number of days between (planned versus actual) milestones (if this is the first
milestone then this calculation is not applicable)
Calculate total milestone variance and cumulative total milestone variance (ref.
App. A, (m))
This indicator helps identify the current status of major project events, and allows
assessment of the impact of potential or actual schedule slips on future activities
and milestones.
A line chart combined with a bar chart (Figure 3.3-1) is used to present the mile-
stone slip information. The information presented by the line chart is a cumulative
milestone slip variance. This is augmented by a bar chart showing the milestone
Planned vs actual value.
Slips in activities and milestones on the critical path are of greatest concern, due to
the ripple effect in later parts of the schedule. The graph should contain a sufficient
level of detail to monitor progress. If multiple builds or releases are planned, sepa-
rate activities and milestones should be defined for each build or release.

Plan Date
Plan Days
Actual Date
Actual Days
Late Start
Total Variance
Cum Variance

ATP
01/01/2000

LCO LCA IOC IOC" IOC3 IOC FOC
05/31/2000 11/30/2000 05/31/2001 10/31/2001 05/31/2002 05/31/2003 05/31/2004

150 180 180 150 210 360 360
01/15/2000 06/15/2000 12/31/2000 07/15/2001 01/02/2002 07/31/2002 10/31/2003 06/30/2004

14
14
14

150
15
15
29

196
30
46
75

195
45
60
135

167
62
79

214

209
60
59
273

450
150
240
513

240
30
-90
423

Plan vs. Actual Milestone Days

600

500

400

% 300
Q

200

100

0

El! Plan Days
Actual Days
Cum Variance

ATP LCO LCA IOC IOC2 IOC3 IOC4 FOC

Milestones

ATP = Authority to Proceed, LCO = Life Cycle Objectives, LCA = Life Cycle Architecture, IOC = Initial Operational Capability, FOC = Final Operational Capability

Figure 3.3-1. Plan vs. actual milestone days.

37

3.3.1.2 Milestone Slip Ratio

Issue
Category

Schedule and Progress
Milestone

Measure Planned milestone completion date.
Actual milestone completion date
Number of days between milestones (if this is the first milestone then this calcula-
tion is not applicable)
Calculate milestone slip ratio, which is the ratio of the milestone variance to the
planned days between milestones (ref. App. A, (n))

Description

Example
Graph

Performance
Analysis

This indicator helps identify the current status of the project. It provides visibility
into the magnitude of the schedule slip when compared to the overall length of the
schedule for each milestone
A line chart (Figure 3.3-2) is used to present the milestone slip information. The
information presented includes a milestone slip value.

Plan Date
Plan Days
Actual Date
Actual Days
Late Start
Variance
Slip Ratio

= -0.20

-0.40

A ratio of zero is ideal, the larger the ratio, the worse the slip in proportion to the
schedule.

ATP
01/01/2000

10
01/15/2000

14
4

0.40

LCO
05/31/2000

150
06/15/2000

150
15
15

0.10

LCA IOC
11/30/2000 05/31/2001

180 180
12/31/2000 07/15/2001

196 195
30 45
46 60

0.26 0.33

lOCT
10/31/2001

150

IOCJ IOC4 FOC
05/31/2002 05/31/2003 05/31/2004

210
01/02/2002 07/31/2002

167
62
79
0.53

209
60
59
0.28

360
10/31/2003

450
150
240
0.67

360
06/30/2004

240
30
-90
-0.25

Milestone Slip Ratio

Milestones

Figure 3.3-2. Milestone slip ratio.

38

3.3.2 Class Status
Class status measures address progress based on the completion of work units that combine incre-
mentally to form a complete software activity or product. If objective completion criteria are defined,
class status measures are extremely effective for assessing progress at any point in the project.
Objective completion criteria are defined as "measurable and useful indicators that demonstrate that
the achievement or maturity/progress in an activity or accomplishment has been achieved. Accom-
plishment criteria include, but are not limited to, (1) completed work efforts; (2) activities to confirm
success of meeting technical, schedule, or cost parameters; (3) Internal documents that provide results
of incremental verification, and (4) Completion of critical process activities and products."
[IMP/IMS] These measures are used for projecting completion dates for the activity or product.

39

3.3.2.1 Plan versus Actual Classes Completed

Issue
Category

Measure

Schedule and Progress
Class Status

Refer to Section 3.1.1.2 (Issue: Growth and Stability, Attribute: Size).

40

3.3.2.2 Plan versus Actual Methods Completed

Issue
Category

Schedule and Progress
Class Status

Measure

Description

Example
Graph

Performance
Analysis

Planned number of methods to be completed during the CRP
Actual number of methods completed (i.e., coded and unit tested) during the CRP
Calculate cumulative number of methods planned to be completed (ref. App. A,
(h))
Calculate cumulative number of methods actually completed (ref. App. A, (h))
This indicator provides an estimate of class status. Unplanned additions and
changes to the number and magnitude of methods can adversely influence sched-
ules and costs. This metric can be used to determine when the implementation
phase is completed.
A line chart combined with a bar chart (Figure 3.3-3) is used to present the class
status information. The information presented includes the planned number of
methods and the actual number of methods plotted over time. A cumulative value is
included in the line chart and a CRP plan/actual is provided in the bar charts.
The planned magnitude of the job must be realistic over the period of performance.
Large changes in the rate per period should be evaluated for feasibility.

Plan
Actual
Cum Plan
Cum Act

week 1
5
4
5
5

week 2
7
5

12
10

week 3
10
8

22
18

week 4
6
5

28
23

week 5
8
9

36
32

week 6
12
12
48
44

week 7
8

11
56
55

week 8
6
6
62
61

week 9 week 10 week 11 week 12
9 5 2 1
9 4 3 2
71 76 78 79
70 74 77 79

Plan vs Actual Methods Completed

^H Actual
--*--Cum Plan
—*—Cum Act

week week week week week week week week week week week week
1 2 3 4 5 6 7 8 9 10 11 12

Time

Figure 3.3-3. Plan versus actual methods completed.

41

3.3.2.3 Plan versus Actual Attributes Completed

Issue
Category

Schedule and Progress
Class Status

Measure

Description

Example
Graph

Performance
Analysis

Planned number of attributes to be completed during the CRP
Actual number of attributes completed (i.e., coded and unit tested) during the CRP
Calculate cumulative number of attributes planned to be completed (ref. App. A,

()))
Calculate cumulative number of attributes actually completed (ref. App. A, (p)
This indicator provides an estimate of the programming associated with the devel-
opment of data structures within the class. Unplanned additions and changes to the
number and magnitude of attributes can adversely influence schedules and costs.
A line chart combined with a bar chart (Figure 3.3-4) is used to present the class
status information. The information presented includes the planned number of
attributes and the actual number of attributes plotted over time. A cumulative value
is included in the line chart and a CRP plan/actual is provided in the bar charts.
The planned magnitude of the job must be realistic over the period of performance.
Large changes in the rate per period should be evaluated for feasibility.

Plan
Actual
Cum Plan
Cum Act

week 1
5
4
5
4

in
<u
4-"
3
ja

o
*

week 2
7
5

12

week 3
10
8

22
17

week 4
6
5

28
22

week 5
8
9
36
31

week 6
12
12
48
43

week 7
8
11
56
54

week 8
6
6
62
60

week 9
9
9

71
69

Plan vs Actual Attributes Completed

week 10
5
4

76
73

week 11
2
3

78
76

week 12
1
2

79
78

NBWSlPlan

-*--Cum Plan
—A— Cum Act

week week week week week week week week week week week week
1 2 3 4 5 6 7 8 9 10 11 12

Time

Figure 3.3-4. Plan versus actual attributes completed.

42

3.3.2.4 Class Traceability Status

Issue
Category

Schedule and Progress
Class Status

Measure

Description

Example
Graph

Performance
Analysis

Number of classes per CRP
Number of classes traced to use cases per CRP
Number of derived classes per CRP
Number of classes not yet traced to use cases per CRP
Calculate cumulative number of classes defined (ref. App. A, (p))
Calculate cumulative number of classes traced to use cases or derived (ref. App. A,

(p))
The class traceability status metric measures the degree to which software design
products have implemented the software requirements.

A line chart combined with a bar chart (Figure 3.3-5) is used to present the trace-
ability information. The information presented includes a cumulative traceability
status. This is augmented by a bar chart indication of the CRP use case traceability
status.
Traceability can be a valuable management support tool at system requirements,
design or other joint reviews. It may also indicate those areas of software require-
ments or design which have not been properly defined. Persistent numbers of
untraced classes can indicate problems in the requirements (use cases), design
(classes) or both.

week 1 week 2 week 3 week 4 week 5 week 6 week 7 week 8 week 9 week 10 v veek 11 week

SW Classes 1 3 6 3 7 8 9 5 7 3 2 1

Traced to Use Case 0 0 0 0 4 5 3 2 1 1 1 0

Derived Class 0 0 0 0 4 7 10 6 6 3 1 1

Not Traced (TBD)
Cum SW Classes

1
1

3
4

6
10

3
13

7
20

8
28

9
37

5
42

7
49

3
52

0
54

0
55

Cum SW Class Traced 0 0 0 0 8 20 33 41 48 52 54 55

Class Traceability Status

60

50
in

8! 40
in
a
O
o

^^
.-■/^

t.'' /
_.,- --' /

.-,-i"' I - So* lifl P 1 Jl Si ^m „ —.—=—

30
20
10

0

*N ^ ^ „& JF J2f
^ -^ -^

1 Traced to Use Case
_l Derived Class
■ Not Traced (TBD)
-CumSW Classes
-Cum SW Class Traced

k <3 <b A <b °> »£

/" •" -/ ^ /" • > ^
Time

^t-
^

Figure 3.3-5. Class traceability status.

43

3.3.2.5 Integration Test Traceability Status

Issue
Category

Schedule and Progress
Class Status

Measure

Description

Example
Graph

Performance
Analysis

SW Classes
Traced to Test Case
Not Traced (TBD)
Cum SW Classes
Cum SW Class Traced

Number of classes per CRP
Number of classes traced to test cases per CRP
Number of classes not yet traced to a test case per CRP
Calculate cumulative number of classes defined (ref. App. A, (q))
Calculate cumulative number of classes traced to test cases (ref. App. A, (q))
The integration test traceability status metric measures the degree to which the
integration test cases cover the software design. The integration testing is focused
on the structure of the system and primarily focuses on interface testing. Having
traceability at this level ensures that appropriate structural coverage has been
achieved in the testing.
A line chart combined with a bar chart (Figure 3.3-6) is used to present the trace-
ability information. The information presented includes a cumulative traceability
status. This is augmented by a bar chart indication of the CRP use case traceability
status.
Traceability of classes to integration test cases provides the capability to track
failed test cases back to areas of the software design. Persistent numbers of classes
untraced to integration test cases can indicate an inadequate integration test pro-
gram. This can lead to defects remaining in the software products until late in the
program when it is more time consuming and expensive to fix them.

week 1 week 2 week 3 week 4 week 5 week 6 week 7
13 6 3 7 8 9
0 0 4 3 6 5 8
13 6 3 7 8 9
1 4 10 13 20 28 37
0 0 4 7 13 18 26

week 8 week 9 week 10 week 11 week 12
5 7 3 2 1
10 5 5 7 2
5 7 3 0 0
42 49 52 54 55
36 41 46 53 55

Integration Test Traceability Status

rMSSa Traced to Test Case
■^Not Traced (TBD)

Cum SW Classes
Cum SW Class Traced

N <V 'b > ,<o ,<o A vL<b °>

y y y • /■ f s s *«v *
Time

Figure 3.3-6. Integration test traceability status.

44

3.3.2.6 Plan verses Actual Classes that have Successfully Passed
Integration Test

Issue
Category

Schedule and Progress
Class Status

Measure

Description

Example
Graph

Performance
Analysis

Planned number of classes tested and passed per CRP
Actual number of classes tested and passed per CRP
Calculate cumulative number of planned classes tested and passed (ref. App. A, (s))
Calculate cumulative number of actual classes tested and passed (ref. App. A, (s))
The Test Passed indicator monitors test progress during the integration and test
phase of a software project. The criteria for determining whether a class has been
successfully tested must be well defined for this metric to be meaningful.
A line chart combined with a bar chart (Figure 3.3-7) is used to present the test
information. The information presented includes the planned number of successful
test cases and the actual number of successful test cases plotted over time. A
cumulative value is included in the line chart and a CRP plan/actual is provided in
the bar chart.

Plan
Actual
Cum Plan
Cum Act

week 1
3
1
3
1

If the actual number of classes successfully tested slips behind the number planned,
this can indicate problems in the software integration test program itself (e.g.,
insufficient or inexperienced staff) or could indicate problems with the software
itself (e.g. large numbers of defects identified by the integration testing).

week 2 week 3 week 4 week 5 week 6 week 7 week 8 week 9 week 10 week 11 week 12
5746 10 64731 1
36378957321
8 15 19 25 35 41 45 52 55 56 57
4 10 13 20 28 37 42 49 52 54 55

Plan vs Actual Classes that have Successfully Passed
Integration Test

in ,-N«
0) DU "

£ en <2 50 -
CO

Ü 40 -
"S 30 -
(0

S 20-
t 10-
* o -

v.-JZ^^ |S«MI Plan
^M Actual
-*--Cum Plan

* Cum Act

■ *"ls^~

■-^^

.--xllH^^r^
.-X'^^-f^? lb _m ,—_
I^.I*'^ N^IH —i F^^H I^^H F^^B ■—■■ i#':^H i y i ^M iiä^H r^taa !'■: ^H r^^l i^^H r^^B l^^H H m~.^m ~~__

week week week week week week week week week week week week
1 2 3 4 5 6 7 8 9 10 11 12

Time

Figure 3.3-7. Plan verses actual classes that have successfully passed integration test.

45

3.3.3 Use Case Status
Use case status measures address progress based on the completion of work units that combine
incrementally to form a complete software activity or product. If objective completion criteria are
defined, use case status measures are extremely effective for assessing progress at any point in the
project. Objective completion criteria are defined as "measurable and useful indicators that demon-
strate that the achievement or maturity/progress in an activity or accomplishment has been
achieved.. .Accomplishment criteria include, but are not limited to: 1) completed work efforts; 2)
activities to confirm success of meeting technical, schedule, or cost parameters; 3) internal docu-
ments, which provide results of incremental verification; and 4) completion of critical process activi-
ties and products." [IMP/IMS] They are used for projecting completion dates for the activity or
product.

46

3.3.3.1 Plan versus Actual Use Cases Completed

Issue
Category

Schedule and Progress
Use Case Status

Measure Refer to section 3.1.1.1 (Issue: Growth and Stability, Category: Size).

47

3.3.3.2 Use Case Traceability Status

Issue
Category

Schedule and Progress
Use Case Status

Measure Number of use cases per CRP
Number of use cases traced to functional requirement(s) per CRP
Number of derived use cases per CRP
Number of use cases not yet traced to parent requirements per CRP
Calculate cumulative number of use cases defined (ref. App. A, (o))
Calculate cumulative number of use cases traced to parent requirement(s) or
derived (ref. App. A, (o))

Description

Example
Graph

Performance
Analysis

SW Use Cases
Traced to High Reqt
Derived Use Cases
Not Traced (TBD)
Cum SW Use Cases
Cum SW UC Traced

The traceability metric measures the degree to which software products have
implemented functional requirements allocated from higher level specifications.

A line chart combined with a bar chart (Figure 3.3-8) is used to present the trace-
ability information. The information presented includes a cumulative traceability
status. This is augmented by a bar chart indication of the CRP use case traceability
status. .
Traceability can be a valuable management support tool at system requirement,
design or other joint reviews. It may also indicate those areas of software require
ments or design which have not been properly defined. Persistent numbers of
untraced use cases can indicate problems in the software requirement definition
(e.g. incompleteness, "gold plating", and incorrect software requirements)

week 1 week 2 week 3 week 4 week 5 week 6 week 7
6
0
0
6
10
0

3
0
0
3
13
0

7
4
4
7
20
8

28
20

week 8 week 9 week 10 week 11 week 12
9 5 7 3 2 1
3 2 1110
10 6 6 3 1 1
9 5 7 3 0 0
37 42 49 52 54 55
33 41 48 52 54 55

Use Case Traceability Status

60
(A Fin
0)
V)
OI 40
Ü
<D 30
(0
Z) 20
o
* 10

0

_ ■

^^^
.y^

..■■'/

.-'' /

- -,-< ■ -"fr! Isfl l*'l rfi Jl,Jl|m ~

EUSSSH Traced to High Reqt
i iDprivpri Use Cases
■HNot Traced (TBD)
 Cum SW Use Cases
 Cum SW UC Traced

\ n, <b
fr fr fr i * ^° «*> st-A M* ^ <?F PT eF & & ■+-

4? ** 4? 4? if jF
•$> NN

•^ >
&

Time

Figure 3.3-8. Use case traceability status.

48

3.3.3.3 Functional Test Traceability Status
Issue
Category

Schedule and Progress
Use Case Status

Measure

Description

Example
Graph

Performance
Analysis

SW Use Cases
Traced to Test Case
Not Traced (TBD)
Cum SW Use Cases
Cum SW UC Traced

Number of use cases per CRP
Number of use cases traced to test cases per CRP
Number of use cases not yet traced to a test case per CRP
Calculate cumulative number of use cases defined (ref. App. A, (r))
Calculate cumulative number of use cases traced to test cases (ref. App. A, (r))
The traceability metric measures the degree to which the functional test cases cover
the software use cases.

A line chart combined with a bar chart (Figure 3.3-9) is used to present the trace-
ability information. The information presented includes a cumulative traceability
status. This is augmented by a bar chart indication of the CRP use case traceability
status.
Traceability of use cases to functional test cases provides the capability to track
failed functional test cases back to the software requirements as defined by the use
cases. The failed tests can thus be tracked back to specific mission needs. Persis-
tent numbers of use cases untraced can indicate an inadequate software qualifica-
tion test program. This can lead to defects remaining in the software product until
later in the program when it is more time consuming and expensive to fix them.

week 1 week 2 week 3 week 4 week 5 week 6 week 7
13 6 3 7 8 9
0 0 4 3 6 5 8
13 6 3 7 8 9
1 4 10 13 20 28 37
0 0 4 7 13 18 26

eek8 week 9 week 10 week 11 week 12
5 7 3 2 1
10 5 5 7 2
5 7 3 0 0

42 49 52 54 55
36 41 46 53 55

Functional Test Traceability Status

H Traced to Test Case
Not Traced (TBD)
Cum SW Use Cases
Cum SW UC Traced

£■
% ,«5 ,fe A

fr fr fr fr fr $r $

Time

% q, No NN &
* fr #■ #• #■

Figure 3.3-9. Functional test traceability status.

49

3.3.3.4 Plan versus Actual Use Cases that have Successfully Passed
Functional Test

Issue
Category

Schedule and Progress
Use Case Status

Measure Planned number of use cases tested and passed per CRP
Actual number of use cases tested and passed per CRP
Calculate cumulative number of planned software use cases tested and passed (ref.
App. A, (t))
Calculate cumulative number of actual software use cases tested and passed (ref.
App. A, (Q)

Description

Example
Graph

Performance
Analysis

The Test Passed indicator monitors test progress during the qualification phase of a
software project. The criteria for determining whether a use case has been success-
fully tested must be well defined for this metric to be meaningful.

week 1
Plan 3
Actual 1
Cum Plan 3
Cum Act 3

A line chart combined with a bar chart (Figure 3.3-10) is used to present the test
information. The information presented includes the planned number of test cases
and the actual number of test cases plotted over time. A cumulate value is included
in the line chart and a CRP plan/actual is provided in the par chart.
If the actual number of use cases successfully tested slips behind the number
planned, this can indicate problems in the software qualification test program itself
(e.g. insufficient or inexperienced staff) or could indicate problems with the soft-
ware itself (e.g. large numbers of defects identified by the functional testing)

week 2 week 3 week 4 week 5 week 6 week 7 week 8 week 9
5746 10 647
36378957
8 15 19 25 35
6 12 15 22 30

41
39

45
44

52
51

week 10
3
3

55
54

week 11
1
2
56
56

week 12
1
1

57
57

Plan vs Actual Use Cases that have Successfully Passed
Functional Test

I—HPIan
■^■Actual
--*--Cum Plan
—*—Cum Act

week week week week week week week week week week week week
1 2 3 4 5 6 7 8 9 10 11 12

Time

Figure 3.3-10. Plan verses actual use cases that have successfully passed functional test.

50

3.3.4 Build Content - Classes
These incremental capability measures count the classes associated with each incremental delivery.
An incremental delivery may be a product shipped to a customer, or it may be an internal build deliv-
ered to the next phase of development. These measures are used to determine whether capability is
being developed as scheduled or being delayed to future deliveries.

51

3.3.4.1 Plan versus Actual Classes in Build

Issue
Category

Schedule and Progress
Build Content - Classes

Measure

Description

Example
Graph

Planned number of classes in current build(s) per CRP
Actual number of classes in current build(s) per CRP
Cumulative number of planned classes in each build
Cumulative number of actual classes in each build
When multiple builds or releases are planned, this indicator helps determine if a
realistic build schedule has been established and if progress in implementing the
classes is tracking to the plan.
A line chart (Figure 3.3-11) is used to present the build information. The informa-
tion presented includes a cumulative classes integrated into build status.

Performance
Analysis

Build 1 Plan
Build 2 Plan
Build 3 Plan
Build 1 Act
Build 2 Act
Build 3 Act

week 1
3

Deferments of classes to later builds without adjustments to the schedule are of
greatest concern. A 5% or greater variance in a single build, or a 10% variance
across two or more builds should be considered significant. During replans, this
metric can assist in analyzing the updated build plans for feasibility based on past
history.

week 2
9

week 3
17

13

week 4 week 5
25

33

week 6 week 7 week 8 week 9 week 10 week 11 week 12

22
33

41

44

49

55

57

66

63

72

Plan vs. Actual Classes in Build

<^ #- e^ e^
<o ,<ö A ,<b ,<>> * NN x^

^ yv J*-

Time

68

77

73

82

78

86

Build 1 Plan
Build 2 Plan
Build 3 Plan

■Build 1 Act
•Build 2 Act
•Build 3 Act

Figure 3.3-11. Plan versus actual classes in build.

52

3.3.4.2 Ratio of Classes in Build
Issue
Category

Schedule and Progress
Build Content - Classes

Measure

Description

Example
Graph

Planned number of classes in current build(s) per CRP
Actual number of classes in current build(s) per CRP
Calculate class integration slip ratio (ref. App. A, (v))
This indicator helps identify the current status of the build by indicating whether
fewer or more classes are implemented in the build than planned. Threshold Upper
Bound+10% of plan.
Threshold Lower Bound -10% of plan.
A line chart (Figure 3.3-12) is used to present the class integration slip information.
The information presented includes a cumulative class integration slip value.

Performance
Analysis

Slips in activities are of greatest concern due to the ripple effect in later parts of the
schedule. This graph provides an overall assessment of the build. It is useful for
ensuring that the project manager does not lose sight of the magnitude of the over-
all schedule slippage. The ideal class integration slip ratio is 1.0 (plan = actual).
Fewer classes implemented in the build than planned can indicate slippage of
classes to later builds, with associated cost and schedule impacts. More classes
implemented in the build than planned can indicate software design instability or
uncontrolled addition of design features and capabilities.

week 1 week 2 week 3 week 4 week 5 week 6 week 7 week 8 week 9 week 10 week 11 week 12
Build 1 Plan 3 9 17 25 33 41 49 57 63 68 73 78
Build 1 Act 1 5 13 22 31 40 49 58 63 68 73 77

Integ Ratio 0.33 0.56 0.76 0.88 0.94 0.98 1.00 1.02 1.00 1.00 1.00 0.99
Upper Bound 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1

Lower Bound 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9

Ratio of Classes in Build

1.20

(0
(1) 1.00
(0

TO 0.80
O
c
TO 0.60

■«3
3

0.40

u
< 0.20

0.00
week week week week week week week week week week week week

1 2 3 4 5 6 7 8 9 10 11 12

Time

Figure 3.3-12. Ratio of classes in build.

53

3.3.5 Build Content - Use Cases
These incremental capability measures count the use cases associated with each incremental delivery.
An incremental delivery may be a product shipped to a customer or it may be an internal build deliv-
ered to the next phase of development. These measures are used to determine whether capability is
being developed as scheduled or being delayed to future deliveries.

54

3.3.5.1 Plan verses Actual Use Cases in Build
Issue
Category

Schedule and Progress
Build Content - Use Cases

Measure

Description

Example
Graph

Planned number of Use Cases in current build(s) per CRP
Actual number of Use Cases in current build(s) per CRP
Cumulative number of planned Use Cases in each build.
Cumulative number of actual Use Cases in each build.
When multiple builds or releases are planned, this indicator helps determine if a
realistic build schedule has been established and if progress in implementing the
software that performs the use cases is tracking to the plan.
A line chart (Figure 3.3-13) is used to present the build information. The informa-
tion presented includes cumulative use cases integrated into build status.

Performance
Analysis

week 1
Build 1 Plan 3
Build 2 Plan
Build 3 Plan
Build 1 Act 1
Build 2 Act
Build 3 Act

Deferments of the use cases to later builds without adjustments to the schedule are
of greatest concern. A 5% or greater variance in a single build, or a 10% variance
across two or more builds should be considered significant. During replans, this
metric can assist in analyzing the updated build plans for feasibility based on past
history.

week 2 week3 week4 weeks week 6 week7 week 8 week 9 week 10 week 11 week 12
8 15 19

25 35 41 45
52 55 56

4 10 18
23 30 37 44

49 51 53

57

55

Plan vs. Actual Use Cases in Build

- - Build 1 Plan
- - Build 2 Plan
- - Build 3 Plan
 Build 1 Act
 Build 2 Act
 Build 3 Act

\ <1 <b
<^~ w^~ 6>~ c

,Q N° ^ t* ,<b ,<b A ,<b ,

A® A® A« A® &> #r <& d& ■$ ■$ ^ ^ -^ ^p ^e ^e.

Time

<y

Figure 3.3-13. Plan verses actual use cases in build.

55

3.3.5.2 Ratio of Use Cases in Build

Issue
Category

Measure

Description

Example
Graph

Performance
Analysis

Schedule and Progress
Build Content - Use Cases

Planned number of use cases in current build(s) per CRP
Actual number of use cases in current build(s) per CRP
Calculate use case integration slip ratio (ref. App. A, (u))
This indicator helps identify the current status of the build by indicating whether
fewer or more use cases are implemented in the build than planned. Threshold
upper bound +10% of plan. Threshold lower bound -10% of plan.

Build Plan
Build Act
Integ Ratio
Upper Bound
Lower Bound

week 1
3
1

0.33
1.1
0.9

A line chart (figure 3.3-14) is used to present the use case integration slip informa-
tion. The information presented includes a cumulative use case integration slip

value.

Slips in activities are of greatest concern, due to the ripple effect in later parts of
the schedule. This graph provides an overall assessment of the build. It is useful
for ensuring that the project manager does not lose sight of the magnitude of the
overall schedule slippage. The ideal use case integration slip ratio is 1.0 (plan =
actual). Fewer use cases implemented in the build than planned can indicate slip-
page of use cases to later builds, with associated cost and schedule impacts. More
use cases implemented in the build than planned can indicate software require-
ments instability or uncontrolled software requirements growth.

week 2 week 3 week 4 week 5 week 6 week 7 week 8 week 9 week 10 week 11 week 12
15 19 25 35 41 45 52 55 56
10 18 23 30 37 44 49 51 53

0.67 0.95 0.92 0.86 0.90 0.98 0.94 0.93 0.95
1.1 1.1 1.1 1.1 1.1 1.1 1.1 1-1 1-1
0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9

8
4

0.50
1.1
0.9

57
55

0.96
1.1
0.9

Ratio of Use Cases in Build

(0
<D
(0
(0
O
0)
w

c
re

o
<

1.20

1.00

0.80

0.60

0.40

0.20

0.00
week week week week week week week week week week week week

1 2 3 4 5 6 7 8 9 10 11 12

Time

Figure 3.3-14. Ratio of use cases in build.

56

4. 00 Technology Transition and Metrics Selection

Metrics selection for a program is difficult. Selecting metrics for use on an 00 development program
is especially challenging since 00 techniques are currently in an industry-wide transition. The fol-
lowing guidance on metrics selection is provided to augment metrics selection information provided
in more general materials such as Practical Software Measurement. [PSM] Specifically, this portion
of the report addresses the unique problems associated with technology transitions and provides guid-
ance on how to address metrics selection for an OO technology transition.

How well a developer uses OO technology depends on how far along that developer is on two curves.
The first is the technology transition life-cycle curve, and the second is the project culture curve.
Before making any specific OO metrics recommendations, acquisition personnel must assess where
the developer is on these curves. That insight will help acquisition personnel understand why a
developer is implementing the OO technology and 00 metrics in a particular way and what recom-
mendations would be effective. The developers themselves also need to understand their position
along these two curves for effective transition to the OO technology. The following paragraphs
describe the characteristics of these two curves. Following a description of the two curves, guidelines
are provided on what metrics may be most useful for any given developer's location on these curves.

This section of the report is not intended to provide overall guidance on metrics selection, which is a
much broader issue. The reader is referred to Practical Software Measures [PSM] for more informa-
tion on the topic of how to select the full set of metrics to be used for a particular program.

4.1 Technology Transition Life cycle
The general model of the technology transition life cycle is shown in Figure 4.1-1. This model con-
tains six phases: Contact, Awareness, Understanding, Trial Use, Limited Adoption, and

institutionalization

UJ

O o

limited adoption;

trial use/
fi¥

' understandingV

awareness,
contact';

TIME
Adapted from: Rogers. Everett M., Dtrfusion ot Innovation.

Figure 4.1-1. Technology transition life cycle.

57

Institutionalization. For the purposes of this description, these six phases will be summarized into
three phases: Awareness, Exploration, and Adoption. In the awareness phase, the organization is
becoming knowledgeable in the technology. In the exploration phase, the organization is becoming
informed about how to apply the technology. And finally, in the adoption phase, the organization
becomes adept in applying the technology.

The Awareness Phase is characterized by a low level of commitment (in terms of resources or people)
and requires a long time to reach the next phase. During this phase, the organization is discovering
what the technology is, developing a philosophy for using it, and beginning to understand what appli-
cations it can be applied to.

The Exploration Phase is characterized by a large increase in commitment over a short period of time.
The organization at this phase has developed a use for the identified technology within the organiza-
tion and has obtained a commitment to this idea from the decision-making structure of the organiza-
tion. The decision-making structure has elected to utilize the technology, on a limited basis, to see
whether there is merit to the idea. Being unprepared for the needed increased commitment in this
phase can often be the death of a well-meaning technology transition program, while being successful
during an exploration phase can catapult the technology into the mainstream of the organization. This
phase is the make or break phase. Few technologies that are unsuccessful during an exploration phase
are continued for further development.

The last and final phase is the Adoption Phase. During this phase, the organization has achieved
some success in applying the technology in a limited sense, and the technology is transitioning to
being applied globally throughout the organization. At this point, the technology will need to be able
to be adaptable to various applications.

The technology transition curve relates to the DoD Acquisition life cycle in that one would expect to
see mature technologies (adoption phase) being applied during the Production and Deployment phase.
Less mature technologies (Exploration Phase) would be developed during the Concept & Technology
Development phase. The System Development & Demonstration phase would be a mixture of the
Adoption and Exploration Phase technologies. Technologies that are characterized as being in an
awareness phase would be contracted for using the technology development contracts, which gener-
ally occur before a program enters the Acquisition life cycle.

Ideally, the software development technologies applied to a product development or system develop-
ment and demonstration contract are all at the adoption phase since this would provide the least risk.
However, this is not always possible, especially when multiple subcontractors are performing on a
contract. In this case, for a given technology, each of the subcontractors may be at a different place
on the technology transition life-cycle curve.

4.2 Technology Adoption Curve
The technology adoption curve characterizes the culture of the organization that is attempting to
apply the new technology. While not all individuals in an organization must exhibit a strong desire to

58

adopt the new technology, a majority of individuals must exhibit a willingness to at least accept the
new technology.

The technology adoption curve shown in Figure 4.2-1 identifies the number of individuals that fall
into various categories during a technology transition effort. This identification is shown as a func-
tion of time. Early on, very few people are involved and can be described as innovators. Later, more
people become involved and can be described as early adopters. These people are now ready to man-
age the transition. Finally, the largest quantity of personnel (i.e., the majority) becomes involved in
the adoption, but these individuals require proof of the effectiveness of the new technology before
they can be full adopters. Finally, the heavy skeptics and laggards may become involved, but cannot
be counted on to support the technology transition. A successful technology adoption would enlist
the first three categories of individuals within an organization (i.e., innovators, early adopters, and the
majority).

4.3 Relationship Between Technology Transition Life cycle
and Technology Adoption Curve

The relationship of the technology transition life-cycle curve to the technology adoption bell curve is
as follows. The innovators lead the effort performed during the awareness phase. During the Explo-
ration Phase, a case is developed for why the technology is useful; additional individuals (i.e., the
early adopters) become involved in determining the value of the technology to the organization.
These people usually become technology managers. During this phase, some of the majority (i.e., the
"need evidence") people are becoming involved, but it is still primarily driven by the innovators (i.e.,
"fanatics and champions") and the early adopters (e.g., "technology managers"). Finally, as the tech-
nology is rolled out in the organization, during the adoption phase, the majority of the organization
becomes involved. During this phase, the skeptics and laggards have no choice but to become
involved because the new technology has started to resemble a steam roller—adopt it or get run over.

Table 4.3-1 maps the major divisions of the technology transition life-cycle curve against the major
divisions of the technology adoption curve.

O

<
N
Z
<

<r o Innovators Laggards

TIME
Adapted from: Moore, Geoffry A., Crossing the Chasm.

Figure 4.2-1. Technology adoption curve.

59

Table 4.3-1. Technology Transition Life Cycle Divisions versus Technology Adoption Curve Divisions

>-
rr
O
CD
UJ

ü

Technology Phase/
Staffed with Awareness Exploration Adoption
1. Innovators Match Match Mismatch
2. Early Adopters Match Match Match
3. Majority Mismatch Match Match
4. Skeptics Mismatch Mismatch Match
5. Laggards Mismatch Mismatch Mismatch

Depending upon whether the characteristics of the technology adoption staff type is suited to the
work being performed in the technology transition phase, each of the intersection cells in this matrix
has been populated with either "match" or "mismatch." These two mappings identify when there is a
match and mismatch between the technology transition life-cycle phase and the types of people from
the technology adoption curve who perform that activity.

Consider, for example, the situation when any of the technology transition phases are staffed and led
by a laggard who was highly successful on a previous program and has been selected for a leadership
position on a newly won contract that is applying the latest technology currently being deployed in
the R&D labs. This individual is well versed in the maintenance processes and has a heavy disposi-
tion towards installing the latest configuration management tools to ensure proper software control.
However, the individual is not well versed in the technologies being applied on the new contract or in
the project management implications of those technologies. This person's existing skills would not
be applicable during the awareness or exploration phases. Only during the adoption phase, after the
technology has been transitioned and is being successfully applied, would his skills be useful.

Metrics can be used to mitigate the risks of inadequate project management that can occur when there
is a mismatch between the technology adoption staff type and the technology transition life-cycle
phase. For example, if there is a laggard or an innovator performing the job of technology adoption
and they are ill suited to perform the job, metrics can be used to compensate for their shortcoming.
For instance, a laggard often is competent in project/program management and lacking in the tech-
nology. For this situation, stressing the technology product quality metric issue area will ensure that
the technology is applied properly. Similarly, an early adopter often is competent in the technology
but lacking in project/program management. For this situation, stressing the schedule and prog-
ress/growth and stability metrics categories will ensure that the project/program management effort is
performed properly.

4.4 Selecting Object-Oriented Metrics
The technology transition life-cycle curve is used to gauge what metrics would be useful during the
application of object-oriented technologies.

60

4.4.1 Technology Transition Life cycle - Awareness Phase
A program that is characterized as being in the Awareness Phase is one in which the organization
adopting the technology has just barely scratched the surface of the technology. The project is proba-
bly struggling to determine how the technology will be used. The organization's technology aware-
ness can be characterized as "one deep." There is probably just one person (or at most a few) who
understands how the technology will be used and the methodology for using it. In this phase, a pro-
gram should:

• Define and stabilize a process for using the technology

• Stabilize the product scope

• Have peer reviews of all technology artifacts with the technology "expert"

OO measurement categories that can help ensure that these things are happening are Use Case Status
and Requirements Volatility. Other metrics categories useful for this purpose include Staff Experi-
ence, Staff Turnover, CMM Level, and Review Status. These measurements are summarized in
Table 4.4-1.

Table 4.4-1. Goal Question Metric Applied to the Awareness Phase

Goal Question Category
Define and stabilize
technology process

Is there organizational
experience in applying new
technology?

• CMM Level

Stabilize product
scope

Are requirements activities on
track?
Have the requirements stabilized?

• Use Case Status
• Requirements

Volatility
"Expert" peer reviews Who's on the project?

How frequently do personnel
change?
Are the review activities on track?

• Staff Experience
• Staff Turnover
• Review Status

4.4.2 Technology Transition Life cycle - Exploration Phase
A program that is characterized as being in the Exploration Phase is usually one in which a number of
individuals have become believers in the technology but do not fully understand it. At this step, most
of the organization is in favor of the new technology, but, in many cases, the organization is using the
terminology of the new technology to describe what has been done in the past. This is similar to what
happened in the mid-1980's with the development of "Ada-tran" (FORTRAN constructs used in the
Ada programming language) software. In the OO transition, for example, shared data items may be
referred to as objects. In this phase, a program should:

• Stabilize the product design as soon as possible

• Define what quality criteria the OO artifacts and code will comply with

61

• Monitor quality criteria metrics regularly to ensure proper technology application

• Have peer reviews of all design decomposition artifacts with the technology "expert"

00 measurement categories that can help to ensure that these things are happening include Inheri-
tance, Object Structure, Coupling, Class Status, and Size. Other measurement categories useful for
this purpose include Staff Experience, Staff Turnover, and Review Status. These measurements are
summarized in Table 4.4-2.

Table 4.4-2. Goal Question Metric Applied to the Exploration Phase

Goal Question Category
Stabilize product
design

Are design activities on track? • Class Status
• Design Volatility

Define and monitor
00 artifacts and
code quality criteria

Have quality criteria been defined'
Are quality criteria being
monitored?
Are 00 artifacts and code quality
within normal range?

• Inheritance
• Object Structure
• Coupling

"Expert" peer reviews Who's on the project?
How frequently do personnel
change?
Are the review activities on track?

• Staff Experience
• Staff Turnover
• Review Status

4.4.3 Technology Transition Life cycle - Adoption Phase
A program that is characterized as being in the Adoption Phase is usually one in which a cadre of
individuals exist that have actually used the technology and know how to apply it. In this environ-
ment, the experienced individuals will not be dedicated to a specific program; they have become a
corporate-wide resource. The emphasis should be on ensuring that each program becomes proficient
in what the experts know as soon as possible. In this phase, a program should:

• Stabilize the product scope

• Stabilize the product design

• Define what quality criteria the OO artifacts and code will comply with

• Monitor quality criteria metrics regularly to ensure proper technology application

• Manage evolutionary builds

OO measurement categories that can help to ensure that these things are happening include Milestone
Status, Build Content, Size, Requirements Volatility, Design Volatility, Inheritance, Object Structure,
Coupling, Class Status, and UseCase Status. These measurements are summarized in Table 4.4-3.

62

Table 4.4-3. Goal Question Metric Applied to the Adoption Phase.

Goal Question Category
Stabilize product
scope

Are requirements activities on
track?
Have the requirements stabilized?

• Use Case Status
• Requirements

Volatility

Stabilize product
design

Are design activities on track? • Class Status
• Design Volatility

Define and monitor
00 artifact and code
quality criteria

Have quality criteria been defined?
Are quality criteria being
monitored?
Are 00 artifacts and code quality
within normal range?

• Inheritance
• Object Structure
•Coupling

Manage Evolutionary
Builds

Is the program on Track?
Is functionality being slipped?

• Milestone Status
• Build Content

63

5. Summary

The Object-Oriented methodology is the latest in the development philosophies to be transitioned into
the DoD software development community. This methodology is particularly compatible with the
evolutionary software development life-cycle model currently being required for use on all DoD large
software-intensive system acquisitions. This life-cycle management approach is based on the evolu-
tionary development philosophy where the software life cycle is iterated a number of times to develop
multiple object-oriented products of increasing capability. These two components, the object-
oriented methodology and its associated evolutionary life cycle, are referred to as object technology.
The application of object technology to the development of software-intensive systems provides some
unique management challenges.

Measurement is a critical tool in the quest for improved product quality and decreased cost and
schedule. In fact, effective management and control of a large software system development effort
are not possible without it. While many organizations use some form of software measurement, most
do not have mature measurement programs. In addition, most organizations that have made or are
making a transition to 00 development have not adapted their measurement programs to fully
address 00 development products, processes, and resources. The guidance in this report is meant for
organizations and projects that need to adapt their existing measurement programs for 00 develop-
ment. The intent of this report is to augment existing metrics information with a primer on the unique
aspects of OO development and how object technology drives metrics selection and use.

A software development project utilizing Object technology has the same software development
issues that a conventional project would. For this reason, this report is presented utilizing the format
of the industry-accepted Practical Software Measures. [PSM] This framework is then extended to
include the OO-unique issues.

For OO development,metrics can be helpful not only in providing information on development status,
problems, and risks, but also in evaluating the effectiveness of 00 methods and tools themselves.
Measurement can be used to track progress toward taking full advantage of the OO paradigm. By
providing data on 00 structural attributes, OO metrics can help assess whether or not OO methods
are being used as intended to facilitate modifiability and reusability. Finally, as organizations modify
their OO processes with the intent of improvement, 00 metrics are needed to assess whether or not
intended improvements are indeed realized. Thirty-one detailed metrics descriptions specific to sys-
tems being developed with object technology are provided that cover the issues of growth and stabil-
ity, product quality, and schedule and progress.

Initially a program selecting to use object technologies may require a technology transition phase in
order to increase the understanding of developers, management, senior management, and customer
personnel on the methodology and its application to the software life-cycle management techniques.
Following this, a phase of institutionalization may be needed where the technique becomes part of
normal operations. When these phases are complete, the organization will be using the object tech-

65

nologies effectively and efficiently as part of normal operations. One of the key areas in which
management insight during a technology transition can be achieved is through the use of appropriate
software development metrics for the OO paradigm. This report discusses how the technology tran-
sition lifecycle influences which types of metrics may be considered useful. For a full discussion of
metrics selection reference the Practical Software Measurement [PSM].

Planning for the use of metrics during an acquisition is an important aspect of management oversight
for both the acquirer and the developer. For the acquirer, a detailed description of what metrics
information is needed and how to contractually transmit the information request to the developer has
been provided in Appendix D.

For metrics use to be effective, it is necessary that the suppliers and users of metrics data understand
the purpose of metrics use, what types of data can be collected, and how the data can be used. Proj-
ects and organizations that expect to benefit from metrics must be willing to commit significant
resources to metrics implementation and use. They must be willing to take time to identify issues,
risks, and information needs and to determine what can be measured to address them. In addition,
they must be serious about developing a metrics program plan that precisely defines metrics and
describes in detail the data collection, analysis, and interpretation processes.

66

Appendix A—Metrics Calculations

(a) Plan vs. Actual Use Cases Completed
Cum. Plan = Previous Week Cum. Plan + CRP Plan
Cum. Actual = Previous Week Cum. Actual + CRP Actual

(b) Plan vs. Actual Classes Completed
Cum. Plan = Previous Week Cum. Plan + CRP Plan
Cum. Actual = Previous Week Cum. Actual + CRP Actual

(c) Number of Attributes in a Class
Cum. Classes = Previous Week Cum. Classes + CRP # Classes
Cum. Attributes = Previous Week Cum. Attributes + CRP # Attributes
Ratio = CRP # Classes / CRP# Attributes
Cum. Ratio = Cum. Classes / Cum. Attributes

(d) Number of Methods in a Class
Cum. Classes = Previous Week Cum. Classes + CRP # Classes
Cum. Methods = Previous Week Cum. Methods + CRP # Methods
Ratio = CRP # Classes / CRP # Methods
Cum. Ratio = Cum. Classes / Cum. Methods

(e) Number of Scenarios in a Use Case
Cum. Use Cases = Previous Week Cum. Use Cases + CRP # Use Cases
Cum. Scenarios = Previous Week Cum. Scenarios + CRP # Scenarios
Ratio = CRP # Use Cases / CRP # Scenarios
Cum. Ratio = Cum. Use Cases / Cum. Scenarios

(f) Added, Deleted and Modified Use Cases
Actual = Base + CRP Added - CRP Deleted
Cum. Plan = Previous Week Cum. Plan + CRP Plan
Cum. Actual = Previous Week Cum. Actual + Actual
Churn Ratio = (CRP Modified / Cum. Actual)

(g) Added, Deleted and Modified Classes
Actual = Base + CRP Added - CRP Deleted
Cum. Plan = Previous Week Cum. Plan + CRP Plan
Cum. Actual = Previous Week Cum. Actual + Actual
Churn Ratio = (CRP Modified / Cum. Actual)

(h) Plan vs. Actual Methods Completed
Cum. Plan = Previous Week Cum. Plan + CRP Plan
Cum. Actual = Previous Week Cum. Actual + CRP Actual

67

(i) Added, Deleted and Modified Methods
Actual = Base + CRP Added - CRP Deleted
Cum. Plan = Previous Week Cum. Plan + CRP Plan
Cum. Actual = Previous Week Cum. Actual + CRP Actual
Churn Ratio = (CRP Modified / Cum. Actual)

(j) Plan vs. Actual Attributes Completed
Cum. Plan = Previous Week Cum. Plan + CRP Plan
Cum. Actual = Previous Week Cum. Actual + CRP Actual

(k) Added, Deleted and Modified Attributes
Actual = Base + CRP Added - CRP Deleted
Cum. Plan = Previous Week Cum. Plan + CRP Plan
Cum. Actual = Previous Week Cum. Actual + CRP Actual
Churn Ratio = (CRP Modified / Cum. Actual)

(1) Type of Method in Class
Cum. Private = Previous Week Cum. Plan + CRP Plan
Cum. Protected = Previous Week Cum. Actual + CRP Actual
Cum. Public = Previous Week Cum. Actual + CRP Actual

(m) Plan vs. Actual Milestone
Total Variance = (Actual Days - Plan Days) + Days Late Starting
Cum. Variance = Previous Week Cum. Variance + Total Variance

(n) Milestone Slip Ratio
Variance = (Actual Days - Plan Days) + Days Late Starting
Slip Ratio = Variance / Plan Days

(o) Use Case Traceability Status
Cum. Use Cases = Previous Week Cum. Use Cases + CRP # Use Cases Defined
Cum. Use Cases (UC) Traced = Previous Week Cum. Use Cases Traced + CRP Use Cases
Traced to a Higher Requirement + CRP Derived Requirements

(p) Class Traceability Status
Cum. Classes = Previous Week Cum. Classes + CRP # Classes Defined
Cum. Classes Traced = Previous Week Cum. Classes Traced + CRP Classes Traced to Use Cases
+ Derived Class

(q) Integration Test Traceability Status
Cum. Classes = Previous Week Cum. Classes + CRP # Classes Defined
Cum. Classes Traced = Previous Week Cum. Classes + CRP Classes Traced to Integration Test
Cases

(r) Functional Test Traceability Status
Cum. Use Cases = Previous Week Cum. Use Cases + CRP # Use Cases Defined
Cum. Use Cases Traced = Previous Week Cum. Use Cases Traced + CRP Use Cases Functional
Test Cases + Derived Requirements

68

(s) Plan vs. Actual Classes that have Successfully Passed Integration Test
Cum. Plan = Previous Week Cum. Plan + CRP Plan
Cum. Actual = Previous Week Cum. Actual + CRP Actual

(t) Plan vs. Actual Use Cases that have Successfully Passed Functional Test
Cum. Plan = Previous Week Cum. Plan + CRP Plan
Cum. Actual = Previous Week Cum. Actual + CRP Actual

(u) Ratio of Use Cases in Build
CRP Use Case Integ. Slip Ratio = CRP Build Actual Use Cases / CRP Build Plan Use Cases

(v) Ratio of Classes in Build
CRP Class Integ. Slip Ratio = CRP Build Actual Classes / CRP Build Plan Classes

69

Appendix B—Referenced Documents

BOOCH

BRIAND

CHID AMBER

COSTELLO

DEMARCO

GSAM

HOTING

IMP/IMS

JACOBSON

JENSEN

KRUCHTEN1

KRUCHTEN2

LORENZ

Booch, Grady. Object-Oriented Analysis and Design with Applications. Benja-
min/Cummings Publishing. Redwood City, CA. 1994.

Briand, Lionel C, Daly, John W. and Jürgen K. Wüst. "A unified framework for
coupling measurement in object-oriented systems," IEEE Transactions on Software
Engineering, vol. 25, no. 1. January/February 1999.

Chidamber, Shyam R. and Chris F. Kemerer. "A metrics suite for object-oriented
design," IEEE Transactions on Software Engineering, vol. 20, no. 6. June 1994.

Costello, Rita J. and Sharon K. Hoting. "Metrics for Software-Intensive Mission
Critical Computer Resource Systems, Version 1." Aerospace Report No. TOR-
96(8617)-1. September 1996.
DeMarco, Tom. Structured Analysis and System Specification. Prentice-Hall, Inc.,
Englewood Cliffs, New Jersery. 1979.

Guidelines for Successful Acquisition Management of Software Intensive Systems,
Version 3.0. Department of the Air Force: Software Technology Support Center.
2000.

Hoting, Sharon K. and Rita J. Costello, "Computer Systems Division Software
System Metrics Approach Revision 1." Aerospace Technical Report TR-96(8617)-
1. September 1996.

Center Preparation Handbook Integrated Master Plan (IMP) Integrated Master
Schedule (IMS), Aeronautical Systems Center, Wright-Patterson Air Force Base,
Ohio. 17 August 1995.

Jacobson, Ivar, Booch, Grady, and James Rumbaugh. The Unified Software
Development Process. Addison-Wesley. Reading, Massachusetts. 1999.

Jensen, Randall W., "Don't Forget About Good Management." CROSSTALK: The
Journal of Defense Software Engineering, vol. 13, no. 8. August 2000.

Krachten, Phillippe. "From Waterfall to Iterative Lifecycle - A tough transition
for project mangers." Rational Software White Paper.
http://www.rational.com/products/whitepapers/102016.jsp.

Krachten, Phillippe. The Rational Unified Process: An Introduction. Addison-
Wesley Longman, Inc., 1999.

Lorenz, Mark and Jeff Kidd. Object Oriented Software Metrics. PTR Prentice
Hall, Englewood Cliffs, New Jersey. 1994.

71

MCCABE

MOORE

OMG

PSM

RATIONAL

ROGERS

ROSENBERG

SPMN

TROUP

YOURDON

McCabe and Associates Website.
http://www.mccabe.com/products/software_metrics.htm

Moore, Geoffry A., Crossing the Chasm, Harper Business, New York, NY. 1991.

OMG Unified Modeling Language Specification, Version 1.3. Object Management
Group, Inc. June 1999.

"Practical Software Measurement," Office of the Under Secretary of Defense for
Acquisition and Technology Joint Logistics Commanders Joint Group on Systems
Engineering (OUSD A&T JGSE), Version 3.1a, April 1998.

"Rational Unified Process: Best Practices for Software Development Teams."
Rational Software White Paper.
http://www.rational.com/products/whitepapers/100420.jsp.

Rogers, Everett M., Diffusion of Innovation. Free Press, New York, NY. 1983.

Rosenberg, Linda H. and Lawrence E. Hyatt. "Software quality metrics for object-
oriented environments". CROSSTALK: The Journal of Defense Software Engi-
neering, vol. 10, no. 4. April 1997.

Program Mangers Guide to Software Acquisition Best Practices, Version 2.31.
Computers & Concepts Associates in the performance of Space and Naval Warfare
Systems Command (SPAWAR) Contract Number N00039-94-C-0153 for the
operation of the Software Program Managers Network (SPMN). 1988.
Troup, Bonnie R. and Brian P. Gallagher. "Using contractor capability evaluations
to reduce software development risk". CROSSTALK: The Journal of Defense
Software Engineering, vol. 12, no. 8. August 1999.
Yourdon, Edward and Larry L. Constantine. Structure Design Fundametnals of a
Discipline of Computer Program and System Design. Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey. 1978.

72

Appendix C—00 Technique Primer

C.1 The Evolution of Software Development.
Early computers were strong boxes with weak brains. These early computers were expected to per-
form small, specific tasks. A programmer's job was to write code that performed that small task. It
took little, if any, analysis to figure out how to solve the problem. As computer capacity grew, the
number of tasks a computer was required to perform increased, but each individual task remained
relatively simple.

Programming then evolved from a task orientation to a system orientation. The software system inte-
grates many individual tasks into a single application. The integrated tasks are required to share data,
communicate, and otherwise automate the operations that were previously run manually one piece at
a time. Programming systems is more difficult than programming tasks. Programmers did not have
the experience or tools to think about systems. Furthermore, the complexity of the software sur-
passed the analysis abilities of most software developers.

Flowcharts were the first widely used analysis tool. A flow chart depicts the functional flow of a
system. The process of flowcharting allows developers to think about and solve problems on paper
before writing code. As an added benefit, flow charts are useful to the people tasked with maintain-
ing systems.

Structured programming in higher order languages (HOL) replaced flowcharts as the design tool of
choice. Early software engineering researchers convinced programmers that removing line numbers,
lining up an "if with its "endif', and eliminating "goto" statements would eradicate bad buggy soft-
ware. Structured programming helped a little; however, bad software continued to be produced.

Next came the structured analysis (SA) techniques, and many tool vendors supplied design decompo-
sition tools to provide a structured mechanism to document the system to the level at which code
could be developed. The thought was that because a coherent cohesive design had been developed
from the "top down," there would be a high probability that the code could integrate successfully
from the "bottom up." The structured analysis movement led to an integration philosophy of either
"top down" or "bottom up." During the structured analysis era, the integration philosophy was influ-
enced by the design decomposition methodology.

The state of the practice has recently evolved to object orientation. This design mechanism focuses
on data rather than functions and produces models that represent a "real world" view of the problem.
Object orientation provides a more intuitive approach to decomposition and a less rigid approach to
integration. Integration in the OO paradigm is principally thread or function based. This approach is
feasible because the designs are based on data integration.

73

As with any adaptive system, the future evolutions fix some of the inadequacies in prior implementa-
tions. Object technology is no different. Specifically, object technology was designed to address the
inadequacies experienced in developing large software systems. These systems are characterized as
applications that exhibit a rich set of behaviors. Some characteristics of large software systems
include:

• Complex problem domain

• Difficulty managing the development process

• Required system flexibility

• Difficulty characterizing the system

Failure to manage the complexity of large software systems results in projects that are late, over
budget, and deficient in meeting their stated requirements.

Object technology was targeted to address the known shortcomings inherent in the development of
large software systems. Due to the risks in developing large complex systems, it became imperative
to implement object technology in order to mitigate their risks. Since complexity in large software
systems will not decrease, software-developing organizations must learn to adapt to it by imposing a
rigorous design approach.

There are two distinct aspects of applying object-oriented technologies. The first is a methodology
for defining the design. The second is a philosophy for managing the life cycle of the project. Each
of these will be discussed in the subsequent sections.

C.2 Comparison of the OO Methodology to the SA Method
A software development methodology can be simply defined as a set of procedures that are followed
from the beginning to the completion of the software development process. Since the 1970s, there
has been a proliferation of unique software design methodologies developed to solve different types
of application problems. Even though these design methodologies have evolved to respond to a spe-
cific application domain, there are many common characteristics. The common characteristics
include: (1) a mechanism for the translation of information domain representation into design repre-
sentation, (2) a notation for representing functional components and their interfaces, (3) heuristics for
refinement and partitioning, and (4) guidelines for quality assessments. These characteristics will be
used to contrast OO and SA methodologies in the following sections.

The Structured Analysis (SA) methodology is a dataflow-oriented design approach. SA utilizes a
technical graphics "language" and a set of procedures and management guidelines to implement the
language. This language is called the language of Structured Analysis. The procedures for the SA
language are similar to the guidelines used for engineering blueprint systems. Each SA diagram is
drawn on a single page and contains three to six nodes with interconnecting arcs. There are two kinds
of SA diagrams - the activity diagram and the data diagram. [DEMARCO]

74

The SA methodology provides a precise and concise representation scheme and a set of techniques to
graphically define complex system requirements. Figure C.2-1 provides a representation of the nota-
tion used for the SA methodology. There is top-down decomposition with clear decomposition for
input, output, and control mechanisms for each node. It is beneficial to segregate the data and the
activities into two diagrams so that the diagrams are not cluttered. The notation also distinguishes
between control data and input data. However, in systems where many hierarchical diagrams are
involved, the additional control information on the diagrams can make it difficult to understand.
[YOURDON]

SA offers two quality criteria for evaluating software design, one for the software system level and
one for the module level. The software system-level criterion measures the connections to other
modules (coupling), and the module-level criterion measures the intra-module unity (cohesion).
Coupling provides a way of evaluating the inter-dependencies between modules. Since modules are
the building blocks of a software system, their relationships will determine how well the system can
be maintained or changed. If the modules are highly interdependent on one another, it will be more
difficult to make changes to one module without affecting the others. Conversely, if the modules are
highly independent from one another, it will be easy to maintain, and changes can be made on one
module without affecting the others. Cohesion provides a way of evaluating the functional connec-
tions among a module's processing elements. The most desirable cohesion is one where a module
performs a single task with individual data elements. The least desirable cohesion is one where a
module performs a few different tasks with unrelated data structures. A good system design will have
strong cohesion and weak coupling.

Navigation * (|

*
Target 4

Acquisition
1

' :

Communication

> Controls
Displays

Computer 1 Computer 2

STRUCTURED ANALYSIS
APPROACH

Figure C.2-1. Structured analysis model notation.

75

Object-Oriented Analysis (OOA) and Design (OOD) create a model of the real world and map it to
the software structure. OO technique model the problem in terms of its data (i.e., objects and classes)
and the operations performed on them. Objects represent concrete entities, which are instances of one
or more classes. Objects encapsulate data attributes, which can be data structures or just attributes,
and operations, which are procedures. Operations contain methods, which are program code that
operates on the attributes. A class is a set of objects that share a set of common structure and behav-
ior. A class represents a type, and an object is an instance of a class. The derivation of subclasses
from a class is called inheritance. Relationships describe the dependencies between classes and
objects.

OO requirements analysis and design start at the top-level of the software system by identifying the
objects and classes, their relationships to other classes, their major attributes, their inheritance rela-
tionships. Next a class hierarchy is derived. The basic building blocks for OO are the mechanisms
for depicting the data structure, specifying the operation and invoking the operation. Figure C.2-2
represents an example OO diagram.

A detailed design representation is obtained by extracting the objects that are available from each
class and defining their relationships to each of the other objects. Identifying classes and objects
creates data abstractions; modules are defined and structures for software are established by assigning
operations to the data; and interfaces are described by developing a mechanism for using the objects.

Once the objects have been identified, the sets of operations that act on the objects are defined. There
are basically three types of operations: those that manipulate data, those that perform computation,
and those that monitor an object. Defining the object and its operations alone is not enough to derive
the program structure. The interface that exists between the overall structure and objects must be
identified and defined. All of these elements are integrated into a program-like construct.

FC Officer Command data

/maintenance\
i information j

Maintenance

OBJECT-ORIENTED
APPROACH

Figure C.2-2. Object-oriented model notation.

76

The Object-Oriented quality criteria for evaluating software design include five attributes: Coupling,
Cohesion, Sufficiency, Completeness, and Primitiveness. Both coupling, the connections to other
modules, and cohesion, the intra-module unity, have been borrowed from structured analysis.
Closely related to the ideas of coupling and cohesion are the criteria that a class or module should be
sufficient, complete, and primitive. Sufficiency means that the class or module captures enough char-
acteristics of the abstraction to permit meaningful and efficient interaction. Completeness means that
the interface of the class or module captures all of the meaningful characteristics of the abstraction.
Where sufficiency implies a minimal interface, completeness implies the interface covers all aspects
of the abstraction. Primitiveness applies to operations on data. An operation is primitive if additional
functionality can be implemented only though access to the underlying representation. [BOOCH]

In summary, both SA and OO provide a means for generating a software design. A summary of the
key points of each of the two methodologies is presented in Table C.2-1. This table is organized
around the common methodology characteristics discussed at the beginning of this section.

Both the SA and OO methodology for developing software are well defined and have been proven
useful in many domains. A comparison of these two methodologies is presented in Figure C.2-3.
One of the features that OO provides that distinguishes it from SA is a focus on the real world. This
approach makes the design models fully understandable by the domain experts. Another feature is
the mapping of the real-world model to the software. This mapping is accomplished by domain-
experienced engineers and provides full traceability between the "what" is needed and the "how" of
implementation. Finally, the OO methodology provides a data centric orientation. This orientation is
the most intuitive approach for many of the data centric systems under development today.

Table C.2-1. Comparison of Characteristics of the Structured Analysis and Object-Oriented Techniques.

Structured Analysis Object Oriented
Mechanism of
Translation

Top down decomposition Model of the "real world"

Notation Activity diagrams
Data diagrams

Objects
Classes
Relationships

Heuristics Data Flow
Control Flow

Modularity
Abstraction
Encapsulation

Quality
Guidelines

Coupling
Cohesion

Coupling
Cohesion
Sufficiency
Completeness
Primitiveness

77

Creates models of
processing system
Hierarchical
Processing Centric

STRUCTURED ANALYSIS
APPROACH

• Creates map of real
world

• Real world maps to
software

• Data centric

OBJECT-ORIENTED
APPROACH

Figure C.2-3. Comparison of structured analysis and object-oriented approaches.

One of the features of the SA approach that distinguishes it from the 00 methodology is a precise
and complete model of the computing system. This approach provides the programmers with a fully
comprehensible model to implement. Another feature of the SA approach is that it provides a hierar-
chical model that hides unnecessary detail from the programmers until absolutely necessary. Finally,
the SA approach details the processes that work on the data.

C.3 Contrast SA Life cycle to OO Life cycle
Software has been developed for the last two decades using the traditional SA approach or its varia-
tions. Each variation created a new set of problems for project management. With the emergence of
object-orientated techniques there has been a radical shift in the development approach.

In parallel with the emergence of OO techniques, new approaches to the software life cycle have
emerged. The software development life cycle can be characterized as either a "once-through" water-
fall or iterative. There are currently several types of iterative life-cycle models in use, e.g., incre-
mental, evolutionary, and spiral. Originally, SA was used with the waterfall or incremental models.
The OO methodology is more suited to the newer evolutionary or spiral life cycles, although any of
the life-cycle models can be used with either type of methodology. Figure C.3-1 summarizes the
mapping of life-cycle models to methodology.

In the SA approach, software is developed using a top-down functional decomposition strategy,
starting with a high-level view and progressively refining this view into a more detailed design.
Implementation and integration are frequently accomplished using a "top down" or "bottom up"

SA OO
Waterfall V
Iterative

Incremental V
Evolutionary A/ V
Spiral V V
OO Specific V

Figure C.3-1. Life cycle to methodology mapping.

78

integration approach. The SA life-cycle activities comprise three main phases: analysis, design, and
implementation, each executed a single time for any given iteration. Figure C.3-2 depicts the

waterfall or "once through" life-cycle model, which contains these three phases of activities in
sequence. In the iterative life cycle models most applicable to SA (iterative, evolutionary, and some
spiral instantiations), each iteration consists of the activities shown in Figure C. 1.3-2 or of specific
subsets of these activities.

In a waterfall approach, there is a lot of emphasis on "the specs" (i.e., the problem-space description)
and getting them correct, complete, polished, and signed-off. In the iterative process, the software
product takes precedence. The software architecture (i.e., the solution-space description) drives early
life-cycle decisions. Customers do not buy specifications; it is the software product that is the main
focus of attention throughout, with both specifications and software evolving in parallel. This focus
on "software first" impacts the various teams. For example, in a waterfall development, testers may
be used to receiving complete, stable specifications, well in advance of the start of testing. In an
iterative development, the testers have to begin working at once on subsets of the software, with
specifications and requirements that are still evolving. [KRUCHTEN1]

In contrast, since the OO-specific approach centers around modeling the "real world" in terms of
objects that encapsulate data and operations, the OO life cycle supports the new programming phases
of Inception, Elaboration, Construction, and Transition. During the Inception Phase, the "good idea"
is defined, and the end-product vision is developed. The Inception Phase is concluded with the life-
cycle objective (LCO) milestone. The Elaboration Phase consists of planning the necessary activities
and required resources, specifying the requirements, and designing the architecture. The life-cycle
architecture (LCA) milestone concludes the Elaboration Phase. The Construction Phase develops the
product and evolves the vision until it is ready for delivery to its user community. The Initial Opera-
tion Capability (IOC) milestone concludes the Construction Phase. The Transition Phase provides for
the transfer of the product to the users. This includes manufacturing, delivering, and training, and
supporting and maintaining the product until the users are satisfied. The Transition Phase is con-
cluded by the Final Operational Capability (FOC), which also concludes the life cycle. This phase
relationship is depicted in Figure C.3-3.

Problem Description and
User Requirements Analysis

Software Requirements
Analysis

Software Design
^EH

Coding and Unit Test

^EE

Integration and
Validation Testing

Maintenance

Figure C.3-2. Waterfall or "Once Through" software life cycle model.

79

INCEPTION
Concept

Exploration

Requirements

Project Mgmt

ELABORATION
Concept

Exploration

Requirements

Design

Configuration
Mqmt

Project Mgmt

CONSTRUCTION
Requirements

Design

Implement

Integration

Configuration
Mgmt

Project Mgmt

TRANSITION
Implement

Integration

Maintenance

Configuration
Mqmt

Project Mgmt

Adapted from: The Rational Unified Process - An Introduction. Krutchten, Philippe, Addison-Wesley, 1999.

Figure C.3-3. Iterative Development - shifting focus across the cycle.

In Figure C.3-3, each iteration follows a pattern similar to the waterfall approach, and, therefore, it
contains the activities of requirements elicitation and analysis, of design and implementation, and of
integration and test. However, from one iteration to the next and from one phase to the next, the
emphasis on the various activities will change. Figure C.3-4 shows the relative emphasis of the vari-
ous types of activities over time. In the Inception Phase the emphasis is mainly on understanding the
overall requirements and determining the scope of the development effort. In the Elaboration Phase,
the focus is on requirements, with some design and implementation aimed primarily at prototyping.
During the Construction Phase the emphasis is on design and implementation. In the Transition
Phase the focus is on ensuring that the system has the right level of quality to meet the objectives. In
this way, the product evolves from initial conception to delivery through numerous iterations of
requirements, design, code, integration, and maintenance. (An example of an OO-specific life-cycle
model would be that which is described in the Rational Unified Process (RUP).) [RATIONAL]

CONS:
• "Big Bang" Integration

Approach
• Specification Based
PROS:
• Conceptually easy to

understand
• Simplified costing (reduced

duplication)

WATERFALL
APPROACH

CONS:
• Difficult to Cost

• Difficult to Manage
• Difficult Accurate Accounting
PROS:
• Early risk mitigation
• Better Change management
• Potential exploitation of reuse
• Lessons Learned rolled back

into product => better quality

ITERATIVE
APPROACH

Figure C.3-4. Comparison of waterfall and iterative life cycle models.

80

In summary, both the Waterfall and Iterative life cycles for developing software are well defined and
have been proven useful in many domains. A comparison of these two life cycles is presented in Fig-
ure C.3-4. Some of the benefits of the waterfall life cycle are that it is conceptually easy to under-
stand and can be applied effectively to many problems. Another benefit of the waterfall approach is
that it allows for a simple determination of how much it will cost to accomplish the job. There are
several major benefits to the Iterative life cycles described above. These include (1) early risk miti-
gation, (2) better accommodation of changes, (3) potential for better exploitation of reuse, and (4)
incorporation of lessons learned from previous iterations.

Appendix D—Acquisition and Development Metrics Planning

The acquirer and the developer both have significant roles to play in developing and using an effec-
tive metrics program. While metrics use is most often thought of as the act of collecting and analyz-
ing data, software measurement encompasses a number of other activities as well, including:

Selecting metrics.

Developing a plan and process for implementing the metrics and for making changes to
the metrics program.

Collecting, calculating, analyzing, and reporting the metrics.

Applying the metrics to identify and/or assess issues, risks, or problems.

Using the results of these assessments to guide decisions and actions and track the effects
of decisions and actions.

There are tasks for both the acquirer and developer in each of these activities.

D.1 The Acquirer's Role
The acquirer's role encompasses the following major tasks:

1. Determining the quantitative data (metrics) needed for the acquirer's program insight

The acquirer should develop a list of known issues, risks, problems, and milestone/
review/IPT events for the program's software effort and identify the types of data that
will give relevant insight. Where possible (depending upon the acquisition phase and the
degree of interaction between the acquirer and developer), the acquirer and developer
should work together on this task.

2. Obtaining metrics planning information and metrics data from the developer

The acquirer should ensure, through contractual means, that the developer is motivated to
provide metrics plans and data to the acquirer. The preferred approach (acquisition strat-
egy permitting) is to explicitly require the developer to deliver metrics plans and periodic
metrics reports. Section D.3, Supplying Metrics Data, discusses this further. If such con-
tractual requests are not allowed, and a capability evaluation [TROUP] is performed, it
may be possible to obtain metrics-planning information in an SDP via appropriate tailor-
ing of the evaluation instrument. If neither of these approaches applies to a program, it
will be necessary to work directly with the developer to encourage metrics use and the
sharing of metrics information.

83

3. Creating a plan for reviewing the developer's metrics plan and analyzing data

The acquirer should assign responsibility for reviewing metrics plans and data, and ensuring
that the assigned staff has the appropriate expertise to understand the information. Such
expertise includes both software engineering and program knowledge. Training or briefings
should be supplied at the executive and technical level as appropriate in preparation for
analyzing and applying the data. The acquirer's plan should describe its analysis process for
metrics data obtained from the contractor, including an approximate analysis schedule, the
resources and skills required to perform the analysis, a list of the high-level steps in the
analysis procedure, the format for reporting analysis results, and the action to be taken based
on the information in the analysis reports.

4. Reviewing the developer's metrics program plan

The developer and acquirer should work together as much as possible during develop-
ment and maintenance of the metrics program plan. Where possible, the acquirer should
have a major role in the metrics selection activity and at least a review role in the metrics
definition activity. The acquirer should assign personnel with software engineering and
program knowledge to evaluate the plan to ensure that it addresses key program objec-
tives, issues, and risks, and that the selected metrics set covers all key software engi-
neering processes, products, and resources. The adequacy of funding and personnel that
the developer allocates to the metrics effort should also be assessed.

As part of this task, the acquirer should document its assessment of the developer's met-
rics approach, metrics set, and metrics definitions, identifying any weaknesses or omis-
sions. Even if this information is not supplied to, or used by, the developer, it will be
useful to the acquisition personnel who must analyze the metrics data.

5. Analyzing the developer's metrics

The acquirer should perform its own analysis of the developer's metrics data. First, an
assessment of the validity of the data should be performed to ensure its currency, consis-
tency, and accuracy. Then, the data should be analyzed and interpreted to identify and
track the status of problems, risks, and issues. The analysis should also use the metrics
data to assess the effectiveness of previous preventive and corrective actions.

6. Supplying feedback for needed changes to the metrics activity

If shortcomings are discovered in the metrics set or the metrics program itself, or if new
metrics are needed, the developer should be notified so that appropriate modifications can
be made. Note that without sufficient contractual motivation, the developer will likely be
reluctant to make modifications, especially if they appear to be costly or if the developer
does not expect to benefit from them. Similarly, the acquirer may find deficiencies in its
own metrics plan, and should modify it accordingly.

84

7. Ensure that metrics results are fed back into development so that corrections/adjustments
can be made.

All too frequently, metrics data is collected and reported but not actually used in manag-
ing the project. Both the developer and the acquirer must work to ensure that corrective
actions are performed based on the analysis of the metrics data.

D.2 The Developer's Role
The developer has tasks to perform that parallel those of the acquirer. These are shown in Table D.2-
1. At a minimum, the developer's tasks include preparing a metrics program plan in accordance with
the instructions in the contract, allocating resources and providing any needed training to implement
the plan, implementing the plan, performing all data collection, analysis, and reporting activities, and
using the results for preventive and corrective action.

Table D.2-1. Metrics Program Planning Tasks

Acquirer Developer
1 Determine metrics needed for acquisition

insight
Determine metrics needed for development
management

2 Request metrics planning information and
metrics data from the developer

Create a metrics plan, data collection and
analysis process, collection and reporting
schedule and format for reporting to devel-
opment management.
Respond to the request by providing the
acquirer with a metrics program information

3 Create a plan for reviewing the developer's
metrics plan and analyzing metrics data

Incorporate the acquirer's review/analysis
plans into the metrics program plan

4 Evaluate the developer's metrics program
plan

Revise the metrics program plan, as
appropriate

5 Analyze the developer's metrics data and
provide analysis results to developer.

Implement the metrics plan, analyzing and
using data in preventive and corrective
action, using the data in process improve-
ment, and supplying data to the acquirer for
analysis
Respond to analysis results from acquirer

6 Supply feedback to the developer on needed
changes to the metrics activity

Analyze metrics program for needed
improvements and improve metrics process
accordingly
Incorporate developer process improvement
analysis and acquirer's feedback as
appropriate

85

The developer's metrics program plan should address the topics in Table D.2-2. These topics were
developed based on material from Metrics for Software-Intensive Mission Critical Computer
Resource Systems [COSTELLO].

Table D.l-2. Topics for the Metrics Program Plan

Topics for the Metrics Program Plan j . .
1. Introduction
2. Project and Organizational Context
Project technical characteristics
Project and organization management characteristics
Project and organization relevant past experience
Intended management use of the metrics information to assess and improve the software system product and the proc-
esses used to generate the product
Project-specific and organization-wide issues, risks, and information needs to be addressed with metrics
3. Roles and Responsibilities
Organization and individuals responsible for the metrics program overall

Roles and responsibilities for metrics selection, definition, planning, evaluation, and improvement
Roles and responsibilities for metrics collection, analysis, reporting, and feedback
Roles and responsibilities for metrics archival and configuration management

Measurement interfaces
Project software development organization to acquirer, user
Project software development organization to subcontractor(s)
Project software development organization to project software process group and/or overall devel-
opment organization (the latter interface may be via the software process group)
Software-level metrics personnel to systems-level metrics personnel
Software metrics personnel to software QA, CM, safety, security, RMA, etc. personnel

Potential impediments to effective metrics use and how these will be addressed
4. General Approach
General procedures for collection, reporting, and data archival/configuration management
Tools for collection, reporting, and data archival/configuration management; and tool interfaces (automated or manual),
where applicable
Overall aggregation structures applicable in data collection and "roll up"
5. Measurable Parameters
Products, processes, and resources relevant to the life cycle and their attributes to measure and to address identified
problems, risks, issues, and information needs
Product, process, and resource characteristics needed to make these attributes measurable (e.g., structuring require-
ments so that they are individually countable
Interfaces to the system level for the software-related, system-level attributes to be measured
Interfaces to software quality and specialty engineering disciplines (e.g., CM, QA, safety, security, RMA)
Phased implementation of metrics, if applicable
6. Detailed Metrics Descriptions
Metrics Name
Metric Description
Primitive data elements - How defined, How and when collected
Equations for calculating the metric
Reporting Format - Graphical and numeric data
Analysis and interpretation guide
7. Metrics Program Evaluation and Improvement Process
Process for determining when improvements are needed
Process for updating metrics set/definitions while maintaining analysis capability on previous metrics set

86

D.3 Supplying Metrics Data
To enable the acquirer to make the most of the developer's metrics program, the developer should
provide the acquirer with the following two types of information: (1) planning information that
describes the metrics program in detail and (2) specific metrics data at regular reporting intervals. It
cannot be assumed that the developer will supply the above information and reports to the acquirer, or
even that the developer knows what constitutes good planning information or a complete metrics
report. The latter might occur depending on where the developer is on the technology transition life-
cycle curve and the technology adoption curve. Therefore, wherever possible, the acquirer must
communicate its specific metrics needs and the developer's development management metrics needs
to the developer in an explicit, contractually binding form.

D.3.1 Planning Information
Planning information consists of information on the overall approach and process (as described in
Table D.I.-2) including complete descriptions of each metric

D.3.2 Metrics Reports
Specific metrics reports consist of graphical and numerical data, written analysis, and data in elec-
tronic form. Metrics reports should contain summary data, primitive data, and interpretive and con-
textual information. In general, high-level, summary data should be reported by the developer and
discussed with the acquirer monthly. Primitive (low-level) data should be reported (or made avail-
able) monthly in electronic form to facilitate analysis by the acquirer. Interpretive and contextual
information should be supplied as required in order to understand the metric report being presented.

Interpretive data should include graphical reports, numerical data supplements, and written analyses.
Graphical reports must contain sufficient information so that they are not misleading. Numerical data
supplements (e.g., in tabular form) may be helpful in this regard. Written analyses should be deliv-
ered with each report. These should explain the process for analyzing the metric; differences between
the expected and actual values for the metric, if any; behavior of the metric in the context of other
project information and metrics; and recommended actions based upon the analysis, if any.

87

LABORATORY OPERATIONS

The Aerospace Corporation functions as an "architect-engineer" for national security programs, specializing in
advanced military space systems. The Corporation's Laboratory Operations supports the effective and timely
development and operation of national security systems through scientific research and the application of
advanced technology. Vital to the success of the Corporation is the technical staffs wide-ranging expertise and
its ability to stay abreast of new technological developments and program support issues associated with rapidly
evolving space systems. Contributing capabilities are provided by these individual organizations:

Electronics and Photonics Laboratory: Microelectronics, VLSI reliability, failure analy-
sis, solid-state device physics, compound semiconductors, radiation effects, infrared and
CCD detector devices, data storage and display technologies; lasers and electro-optics, solid
state laser design, micro-optics, optical communications, and fiber optic sensors; atomic
frequency standards, applied laser spectroscopy, laser chemistry, atmospheric propagation
and beam control, LIDAR/LADAR remote sensing; solar cell and array testing and evalua-
tion, battery electrochemistry, battery testing and evaluation.

Space Materials Laboratory: Evaluation and characterizations of new materials and
processing techniques: metals, alloys, ceramics, polymers, thin films, and composites;
development of advanced deposition processes; nondestructive evaluation, component fail-
ure analysis and reliability; structural mechanics, fracture mechanics, and stress corrosion;
analysis and evaluation of materials at cryogenic and elevated temperatures; launch vehicle
fluid mechanics, heat transfer and flight dynamics; aerothermodynamics; chemical and
electric propulsion; environmental chemistry; combustion processes; space environment
effects on materials, hardening and vulnerability assessment; contamination, thermal and
structural control; lubrication and surface phenomena.

Space Science Applications Laboratory: Magnetospheric, auroral and cosmic ray
physics, wave-particle interactions, magnetospheric plasma waves; atmospheric and
ionospheric physics, density and composition of the upper atmosphere, remote sensing
using atmospheric radiation; solar physics, infrared astronomy, infrared signature analysis;
infrared surveillance, imaging, remote sensing, and hyperspectral imaging; effects of solar
activity, magnetic storms and nuclear explosions on the Earth's atmosphere, ionosphere and
magnetosphere; effects of electromagnetic and particulate radiations on space systems;
space instrumentation, design fabrication and test; environmental chemistry, trace detection;
atmospheric chemical reactions, atmospheric optics, light scattering, state-specific chemical
reactions and radiative signatures of missile plumes.

Center for Microtechnology: Microelectromechanical systems (MEMS) for space
applications; assessment of microtechnology space applications; laser micromachining;
laser-surface physical and chemical interactions; micropropulsion; micro- and nanosatel-
lite mission analysis; intelligent microinstruments for monitoring space and launch sys-
tem environments.

Office of Spectral Applications: Multispectral and hyperspectral sensor development;
data analysis and algorithm development; applications of multispectral and hyperspectral
imagery to defense, civil space, commercial, and environmental missions.

THE AEROSPACE
ICORPORATION

2350 E. El Segundo Boulevard
El Segundo, California 90245-4691

U.S.A.

